首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure and K-doped vanadia/titania prepared by different methods have been studied in order to elucidate the role of vanadia species (monomeric, polymeric, bulk) in catalytic toluene partial oxidation. The ratio of different vanadia species was controlled by treating the catalysts in diluted HNO3, which removes bulk vanadia and polymeric vanadia species, but not the monomeric ones, as was shown by FT-Raman spectroscopy and TPR in H2. Monolayer vanadia species (monomeric and polymeric) are responsible for the catalytic activity and selectivity to benzaldehyde and benzoic acid independently on the catalyst preparation method. Bulk V2O5 and TiO2 are considerably less active. Therefore, an increase of the vanadium concentration in the samples above the monolayer coverage results in a decrease of the specific rate in toluene oxidation due to the partial blockage of active monolayer species by bulk crystalline V2O5. Potassium diminishes the catalyst acidity resulting in a decrease of the total rate of toluene oxidation and suppression of deactivation. Deactivation due to coking is probably related to the Brønsted acid sites associated with the bridging oxygen in the polymeric species and bulk V2O5. Doping by K diminishes the amount of active monolayer vanadia leading to the formation of non-active K-doped monomeric vanadia species and KVO3.  相似文献   

2.
Vanadia-silica aerogels, containing 10 to 30 wt% V2O5, and a xerogel were prepared from vanadium(V) oxide triisopropoxide and vanadium (III) acetylacetonate (V(III)acac) precursors using the solution-sol-gel method and different drying processes, including conventional evaporative and high-temperature and low-temperature supercritical drying. The behavior of these mixed oxides in the selective catalytic reduction of NO by NH3 was tested and compared to that of other vanadia-silica and vanadia-titania catalysts. The structural and catalytic properties of the sol-gel derived vanadia-silica mixed oxides were found to be mainly influenced by the drying method, the vanadia content and the vanadia precursor used. For a particular vanadia content (10 wt%), low-temperature supercritical drying and evaporative drying resulted in significantly higher vanadia dispersion than high-temperature supercritical drying, which led to crystalline V2O5. Turnover frequencies for SCR at temperatures T < 475K were highest for low-temperature aerogels containing well-dispersed vanadium oxide species. Exposing these catalysts to higher temperatures under SCR conditions resulted in agglomeration/redispersion phenomena and at temperatures T > 550K best catalytic behavior was observed with vanadia-silica mixed oxides for which Raman spectroscopy indicated the presence of crystalline V2O5, as was the case for aerogels obtained by high-temperature supercritical drying and the low-temperature aerogel with the highest vanadia content (30 wt%).  相似文献   

3.
Reactivity of V2O5&z.sbnd;WO3TiO2 de-NOx catalysts by transient methods   总被引:1,自引:0,他引:1  
The reactivity of ternary V2O5&z.sbnd;WO3TiO2 de-NOxing catalysts with compositions similar to those of commercial catalysts (WO3 ca. 9% w/w, V2O5 < 2% w/w) is investigated by transient techniques (temperature programmed desorption, TPD; temperature programmed surface reaction, TPSR; and temperature programmed reaction, TPR). The results indicate that the reactivity of the ternary catalysts in the SCR reaction increases on increasing the vanadia loading, and that the ternary catalysts are more active than the corresponding binary vanadia-titania samples with the same V2O5 loading. Indeed the SCR reaction is monitored at lower temperatures and high NO conversions are also preserved at high temperatures. TPSR and TPR data show that at low temperatures the SCR reaction occurs via a redox mechanism that involves at first the participation of the catalyst lattice oxygen and then the reoxidation of the reduced sites by gas-phase oxygen. Based on TPSR and TPR data, the higher reactivity of the ternary catalysts has been related to their superior redox properties, in line with previous chemico-physical characterisation studies. The catalyst redox properties thus appear as a key-factor in controlling the reactivity of V2O5&z.sbnd;WO3TiO2 de-NOxing catalysts at low temperatures. The results also show that at high temperatures the surface acidity plays an important role in the adsorption and activation of ammonia.  相似文献   

4.
A series of titania (anatase)-supported vanadia catalysts ranging in V2O5 content from 0.4 to 9.9 mol% was prepared by wet impregnation technique, characterized by BET surface area measurement and X-ray diffraction, and evaluated for ammoxidation of 3-picoline. The average oxidation number of vanadium in the fresh and used catalysts was determined by titrimetric methods. The ammoxidation activity and the average oxidation number were observed to increase with vanadia loading up to 3.4 mol% in the catalyst which corresponds to a monolayer coverage. The phase transformation of anatase to rutile after the reaction was observed at a V2O5 loading of 5.9 mol%. The slow decrease of ammoxidation activity beyond 3.4 mol% V2O5 was attributed to the coverage of active monomeric VOx species on the support by bulk vanadia and by other oxides, and also to compound formation with ammonia.  相似文献   

5.
A series of V2O5–TiO2 aerogel catalysts were prepared by sol–gel method with subsequent supercritical drying with CO2. The aerogel catalysts showed much higher surface areas and total pore volumes than V2O5–TiO2 xerogel and impregnated V2O5–TiO2 catalysts. Two species of surface vanadium in the aerogel catalysts were identified by Raman measurements: monomeric vanadyl and polymeric vanadates. The selective oxidation of hydrogen sulfide in the presence of excess water and ammonia was studied over these catalysts. Aerogel catalysts showed very high conversion of H2S without harmful emission of SO2. Temperature programmed reduction (TPR), XRD and Raman analyses revealed that the high catalytic performance of the aerogel catalysts originated from their highly dispersed VOx species and high reducibility.  相似文献   

6.
Characterization by temperature programmed reduction   总被引:1,自引:0,他引:1  
Fresh and used EUROCAT Oxide-2 catalyst made up of V2O5, WO3 and TiO2 with SiO2, Al2O3 and CaO as main additives have been studied by means of temperature programmed reduction (TPR). As in the EUROCAT Oxide-1 project (V2O5/TiO2 catalysts) for similar conditions similar profiles were obtained in the different laboratories. In contrast to the V2O5/TiO2 catalysts (EUROCAT Oxide-1 project), where the vanadia content could be determined by TPR with reasonable reliability, the exact determination of the vanadia and tungsta loading for the ternary catalysts is not possible because of the occurrence of several superimposed phenomena (reduction of vanadia, tungsta and titania and formation/reduction of CaWO4, reactions are not completed at maximal temperature reached), which are not discernible by TPR.  相似文献   

7.
The oxidative dehydrogenation of propane was investigated using vanadia type catalysts supported on Al2O3, TiO2, ZrO2 and MgO. The promotion of V2O5/Al2O3 catalyst with alkali metals (Li, Na, K) was also attempted. Evaluation of temperature programmed reduction patterns showed that the reducibility of V species is affected by the support acid–base character. The catalytic activity is favored by the V reducibility of the catalyst as it was confirmed from runs conducted at 450–550°C. V2O5/TiO2 catalyst exhibits the highest activity in oxydehydrogenation of propane. The support’s nature also affects the selectivity to propene; V2O5 supported on Al2O3 catalyst exhibits the highest selectivity. Reaction studies showed that addition of alkali metals decreases the catalytic activity in the order non-doped>Li>Na>K. Propene selectivity significantly increases in the presence of doped catalysts.  相似文献   

8.
Alumina–silica mixed oxide, synthesized by the sol–gel technique, was used as a support for dispersing and stabilizing the active vanadia phase. The catalysts were characterized employing 51V and 1H solid-state MAS NMR, diffuse reflectance FT-IR, BET surface area measurements. The partial oxidation activities of the catalysts were tested using methanol oxidation as a model reaction. 51V solid-state NMR studies on the calcined catalysts showed the peaks corresponding to the presence of both tetrahedral and distorted octahedral vanadia species at low vanadia loadings and with an increase in V2O5 content, the 51V chemical shifts corresponding to amorphous V2O5 like phases were observed. DRIFTS studies of the catalysts indicated the vibrations corresponding tetrahedral vanadia species at low and medium loadings and at high V2O5 contents the vibrations corresponding V=O bonds of V2O5 agglomerates were observed. The V/Al–Si catalysts exhibited high selectivity for the dehydration product dimethyl ether in the methanol partial oxidation studies showing the predominance of the acidic nature of the alumina–silica support over the redox properties of the active vanadia phase.  相似文献   

9.
V2O5 supported on sulfated TiO2 catalyst was investigated by using Raman and infrared spectroscopies to examine the surface structure of vanadia and the hydroxyl groups of titania along with the sulfate species on the catalyst surface. The surface structure of vanadia plays a critical role, particularly for the reduction of NO by NH3. The polymeric vanadate species on the catalyst surface is the active reaction site for this reaction system. The surface sulfate species enhanced the formation of the polymeric vanadate by reducing the available surface area of the catalyst. The formation of the polymeric vanadate species on the catalyst surface also depends on the number of hydroxyl groups on the support. Both the sulfate and the vanadate species strongly interacted with the hydroxyl groups on titania. The fewer the number of the hydroxyl sites on the catalyst surface became by increasing the calcination temperatures, the more the polymeric vanadate species formed. A model was proposed to elucidate the progressive alteration of the surface structure of vanadia by the amounts of V2O5 loadings and the sulfate species on the catalyst surface.  相似文献   

10.
The surface properties of a series of V2O5 catalysts supported on different oxides (Al2O3, H–Na/Y zeolite, MgO, SiO2, TiO2 and ZrO2) were investigated by transmission electron microscopy and FTIR spectroscopy augmented by CO and NH3 adsorption. In the case of the V2O5/SiO2 system TEM images evidenced the presence of V2O5 crystallites, whereas such segregated phase was not observed for the other samples. VOx species resulted widely spread on the surface of Al2O3, H–Na/Y zeolite, MgO and SiO2, whereas on TiO2 and ZrO2 they are assembled in a layer covering almost completely the support. Furthermore, evidences for the presence in this layer of V–OH Brønsted acid sites close to the active centres were found. It is proposed that propene molecules primarily produced by oxydehydrogenation of propane can be adsorbed on this acid centres and then undergo an overoxidation by reaction with redox centres in the neighbourhood. This features could account for the low selectivity of V2O5/TiO2 and V2O5/ZrO2 catalysts.  相似文献   

11.
The molecular structures and reactivity of the group V metal oxides (V2O5, Nb2O5 and Ta2O5) were compared. Their solid state structural chemistry, physical and electronic properties, number of active surface sites and their chemical reactivity properties were examined. For the bulk oxides, the solid state structural chemistry and the physical and electronic properties are well established. The number of active surface sites and the distribution of surface redox/acid sites were determined with methanol chemisorption and methanol oxidation, respectively. These studies revealed that the active surface sites present in pure V2O5 are primarily redox sites and the active surface sites in pure Nb2O5 are essentially acidic in nature. Furthermore, the surface redox sites present in pure V2O5 are orders of magnitude more active than the surface acid sites in pure Nb2O5. Consequently, the catalytic properties of bulk V2O5–Nb2O5 mixed oxides are dominated by the vanadia component. For the supported metal oxides, where the group V metal oxides are present as two-dimensional metal oxide overlayers, the structural and electronic properties are not well established in the literature. From a combination of molecular spectroscopic characterization methods (e.g., XANES, Raman, IR and UV–Vis DRS), it was possible to obtain this fundamental information. Methanol chemisorption studies demonstrated that a similar number of active surface sites are present in the supported vanadia and niobia catalyst systems. Similar to their bulk oxides, the surface vanadia species possess redox characteristics and the surface niobia species primarily possess acidic characteristics (Lewis acidity). The surface niobia species was a very sluggish redox site during oxidation reactions (e.g., methanol oxidation to formaldehyde and SO2 oxidation to SO3), but significantly promoted the surface vanadia redox sites for oxidation reactions that required dual surface redox and acid sites (e.g., butane oxidation to maleic anhydride and selective catalytic reduction of NOx by NH3 to produce N2). These new fundamental insights are allowing for the molecular engineering of group V metal oxide catalysts (especially vanadia and niobia). In contrast, the molecular structure and reactivity properties of Ta2O5 catalysts are not yet established and will require significant research efforts.  相似文献   

12.
Oxidized diamond demonstrated excellent support for the dehydrogenation of light alkanes to alkenes in the presence of CO2. Oxidized diamond-supported Cr2O3 and V2O5 catalysts exhibited comparatively higher catalytic activities in the dehydrogenation of lower alkanes in the presence of CO2. In the dehydrogenation of propane, the oxidized diamond-supported Cr2O3 and V2O5 catalysts in the presence of CO2 afforded nearly twofold higher activities than that in the absence of CO2. The activity of the oxidized diamond-supported V2O5 catalyst in the dehydrogenation of propane increased with increasing reaction temperatures. Furthermore, in the dehydrogenation of n-butane and iso-butane, a promoting effect of CO2 on butane conversion and butenes yields was observed over the oxidized diamond-supported Cr2O3 and V2O5 catalysts, though the promotion effect was small.

UV-Vis analyses of the fresh and the reacted catalysts in the presence and absence of CO2 revealed that CO2 kept the surface V2O5 and Cr2O3 in a state of oxidation slightly higher than that in the absence of CO2.  相似文献   


13.
The application of different techniques (diffuse reflectance-UV–vis, 51V NMR, FT-IR of adsorbed pyridine and TPR-H2) in the characterization of vanadia supported on mesoporous Al2O3 catalysts shows that the nature of the vanadium species depends on the V-loading. At V-content lower than 15 wt.% of V-atoms (30% of the theoretical monolayer), vanadium is mainly in a tetrahedral environment. Higher V-contents in the catalyst leads to the formation of octahedral V5+ species and V2O5-like species. Both XRD and textural results indicate that the mesoporous structure of the support is mostly maintained after the vanadium incorporation, and therefore high surface areas were obtained on the final catalysts. Al2O3-suppported vanadia catalysts are active and selective in the oxidative dehydrogenation of ethane, although the catalytic behavior depends on the V-loading. High rates of formation of ethylene per unit mass of catalyst per unit time have also been observed as a consequence of the high dispersion of V-atoms on the surface of the support.  相似文献   

14.
Alumina-, silica-, and titania-supported vanadium oxide systems with V2O5 loadings ranging from 3 to 12 wt.%, corresponding to 0.02–0.09 V/(Al,Si,Ti) atomic ratios, were prepared by atomic layer deposition (ALD) and compared with the corresponding impregnated catalysts. The surface acidic properties of the supports and catalysts were investigated using ammonia adsorption microcalorimetry to determine the number and strength of the surface acid sites. Deposition of V2O5 on alumina and titania supports gave rise to catalysts with lower amounts of acid sites than the respective supports, while for the samples prepared on silica, an increase of the number of acid sites was observed after V2O5 deposition. As a common trend, the surface acid strength was greater for the ALD catalysts than for the impregnated ones, suggesting a stronger interaction of the VO species with the support centers, which act as electron attractor centers creating Lewis-like vanadium species. Redox cycles were performed, involving temperature programmed reduction (TPR) analyses separated by an oxidation treatment (TPO). The results evidenced the good reversibility of the redox behavior of the vanadium centers in every case, while significant differences were observed when comparing the temperatures of reduction (Tmax). Lower Tmax values were observed for the better dispersed vanadia catalysts. After reduction, the V centers had a final formal average oxidation state corresponding to +3 or less (+2.5 to +2). The reactivity of the vanadia systems was examined by measuring their performance for the oxidation of o-xylene to phthalic anhydride. Activity tests indicated the superior selectivity of the V2O5 systems based on the more acidic supports (Al2O3 and TiO2). The nature of the support governed the activity, and the more concentrated catalysts gave rise to improved selectivity to phthalic anhydride.  相似文献   

15.
赵乐乐  王守信  王远洋 《工业催化》2015,23(11):874-881
以活性成分负载量、负载顺序和焙烧温度等关键制备参数因素进行正交实验设计制备了V_2O_5-WO_3/TiO_2催化剂,对其进行XRD和TPR表征,并在自行设计搭建的SCR烟气脱硝实验平台上评价其(300~390)℃的SCR脱硝性能。结果表明,活性成分钒和钨绝大多数以非晶态形式存在于载体表面,且具有良好的分散性;主要活性成分V_2O_5负载量越高,脱硝率越高;400℃焙烧温度可以形成催化反应所需的晶相,且维持催化剂较高的比表面积;催化剂低温活性和高温活性是由表面富集和各种成分之间相互作用共同产生的结果,活性组分与载体之间的相互作用对315℃低温脱硝活性影响明显,以先钒后钨负载顺序为宜,表面富集对390℃高温脱硝活性起主要作用,以钒钨同时负载或先钒后钨负载顺序较好;随着m(WO_3)∶m(V_2O_5)的增加,在7.5∶1处催化剂的脱硝率升至最高,随后迅速下降,WO_3负载质量分数以6%为宜。在优化条件V_2O_5负载质量分数0.8%、WO_3负载质量分数6%、先钒后钨负载和400℃焙烧温度下制备了催化剂并进行脱硝性能验证,315℃低温脱硝活性达到69.56%。  相似文献   

16.
The effect of the nature of vanadium species on benzene total oxidation   总被引:4,自引:0,他引:4  
The nature of the vanadium species present on V2O5/Al2O3 catalysts was investigated by using solid state 51V NMR, diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD) and temperature programmed reduction (TPR). 51V NMR and DRS analyses indicated the presence of V5+ in tetrahedral symmetry at low vanadium loading. A surface polymeric vanadium species and/or the bulk crystalline V2O5 were mainly observed at high vanadium loading as also detected by XRD. The positions of the absorption edges determined through the UV–VIS spectra allowed distinguishing between various tetrahedral symmetries. After TPR, the average oxidation state of vanadium depended on the vanadium content. The nature of vanadium species was related to the catalyst behavior on the benzene oxidation reaction. The catalysts containing high vanadium content were more active suggesting that a high amount of V4+ is responsible for the higher activity.  相似文献   

17.
To get the low temperature sulfur resistant V2O5/TiO2 catalysts quantum chemical calculation study was carried out. After selecting suitable promoters (Se, Sb, Cu, S, B, Bi, Pb and P), respective metal promoted V2O5/TiO2 catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD) and Brunner Emmett Teller surface area (BET-SA). Se, Sb, Cu, S promoted V2O5/TiO2 catalysts showed high catalytic activity for NH3 selective catalytic reduction (NH3-SCR) of NOx carried at temperatures between 150 and 400 °C. The conversion efficiency followed in the order of Se > Sb > S > V2O5/TiO2 > Cu but Se was excluded because of its high vapor pressure. An optimal 2 wt% ‘Sb’ loading was found over V2O5/TiO2 for maximum NOx conversion, which also showed high resistance to SO2 in presence of water when compared to other metal promoters. In situ electrical conductivity measurement was carried out for Sb(2%)/V2O5/TiO2 and compared with commercial W(10%)V2O5/TiO2 catalyst. High electrical conductivity difference (ΔG) for Sb(2%)/V2O5/TiO2 catalyst with temperature was observed. SO2 deactivation experiments were carried out for Sb(2%)/V2O5/TiO2 and W(10%)/V2O5/TiO2 at a temperature of 230 °C for 90 h, resulted Sb(2%)/V2O5/TiO2 was efficient catalyst. BET-SA, X-ray photoelectron spectroscopy (XPS) and carbon, hydrogen, nitrogen and sulfur (CHNS) elemental analysis of spent catalysts well proved the presence of high ammonium sulfate salts over W(10%)/V2O5/TiO2 than Sb(2%)/V2O5/TiO2 catalyst.  相似文献   

18.
The physico-chemical characteristics and the reactivity of sub-monolayer V2O5-WO3/TiO2 deNOx catalysts is investigated in this work by EPR, FT-IR and reactivity tests under transient conditions. EPR indicates that tetravalent vanadium ions both in magnetically isolated form and in clustered, magnetically interacting form are present over the TiO2 surface. The presence of tungsten oxide stabilizes the surface VIV and modifies the redox properties of V2O5/TiO2 samples. Ammonia adsorbs on the catalysts surface in the form of molecularly coordinated species and of ammonium ions. Upon heating, activation of ammonia via an amide species is apparent. V2O5-WO3/TiO2 catalysts exhibits higher activity than the binary V2O5/TiO2 and WO3/TiO2 reference sample. This is related to both higher redox properties and higher surface acidity of the ternary catalysts. Results suggest that the catalyst redox properties control the reactivity of the samples at low temperatures whereas the surface acidity plays an important role in the adsorption and activation of ammonia at high temperatures.  相似文献   

19.
Formation of vanadia species during the calcination of ball milled mixture of V2O5 with TiO2 was studied by Raman spectroscopy in situ and at ambient conditions. It is found that calcination in air leads to fast (1–3 h) spreading of vanadia over TiO2 followed by a slower process leading to the formation of a monolayer vanadia. The calcinated catalyst showed higher activity during toluene oxidation than the uncalcinated one, but the selectivity towards C7-oxygenated products (benzaldehyde and benzoic acid) remains unchanged. The activity of the catalysts is ascribed to the formation of vanadia species in the monolayer. The details of the parallel–consecutive reaction scheme of toluene oxidation are presented from steady-state and transient kinetics studies. Different oxygen species seem to participate in the deep and partial oxidation of toluene. Coke formation was observed during the reaction presenting an average composition C2nH1.1n. The amount of coke on the catalyst was not dependent on the calcination step and the vanadium content in the catalyst. Coke formation was seen to be responsible for the deactivation of the catalyst.  相似文献   

20.
A novel multiwalled carbon nanotube (CNTs) supported vanadium catalyst was prepared. The structure of catalyst prepared was characterized by TEM, BET, FTIR, XRD and temperature-programmed desorption (TPD) methods. The results indicated that vanadium particles were highly dispersed on the wall of carbon nanotubes. The V2O5/CNT catalysts showed good activities in the SCR of NO with a temperature range of 373–523 K. The Lewis acid sites on the surface of V2O5/CNT are the active sites for the selective catalytic reduction (SCR) of NO with NH3 at low temperatures. It was suggested that the reaction path might involve the adsorbed NH3 species reacted with NO from gaseous phase and as well as the adsorbed NO2 species. The diameter of CNTs showed positive effect on the activities of the catalysts. Under the reaction conditions of 463 K, 0.1 Mpa, NH3/NO = 1, GHSV = 35,000 h−1, and V2O5 loading of 2.35 wt%, the outer diameter of CNTs of 60–100 nm, the NO conversion was 92%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号