首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective catalytic reduction (SCR) of nitric oxide (NO) with propane is studied over CoZSM-5 catalysts with a series of exchanged cobalt concentrations (0.9-7.5 wt.-%). The overall activity for SCR of NO is found to increase linearly with the cobalt content in the range below the maximum exchange capacity (CoAl= 0.5). However, when the cobalt loading exceeds the exchange capacity of the zeolite, viz.CoAl 0.5, the combustion of propane is favored significantly, resulting in a decrease of the NO conversion. The presence of excess Co2+ in zeolite appears to bring about the marked falls in adsorption of NO. In this case cobalt oxide particles are presumed to form, which promote the oxidation of propane. Nevertheless, the addition of alkaline-earth metal cations (Ba, Ca) resulted in the suppression of propane oxidation over CoZSM-5, and improved the NO conversion dramatically.  相似文献   

2.
The activity of ZSM-5 and boralite zeolites (Na, H and Cu forms) in the reduction of nitric oxide with propane / oxygen is compared. Copper ion-exchanged boralite is more active than a corresponding Cu-ZSM-5 sample with the same MFI structure, Si/M (M = Al or B) ratio and copper content, showing that in copper-exchanged samples Brønsted acid sites do not play a key role in the reaction mechanism, in contrast to that found for samples without the exchanged transition metal.  相似文献   

3.
Selective catalytic reduction of nitric oxide with ammonia in synthetic low temperature flue gases has been investigated on a commercially available precious metal catalyst, NOxCAT 920 LTTM. It has been found that this catalyst is capable of achieving up to 90% conversion at temperatures below 300°C and low space velocities (12 000 h−1), even in the presence of 20 ppm sulfur dioxide. The ideal ammonia concentration to reduce slip and achieve maximum conversion seems to be a stoichiometric match between ammonia concentration and nitric oxide concentration. A dual site model is proposed to explain the selectivity dependence on the presence of water vapor or sulfur dioxide.  相似文献   

4.
A series of titania supported MoO3 catalysts (0–20 wt.-% MoO3) were prepared by dry impregnation. The influence of the MoO3 content on their catalytic performance for the selective catalytic reduction (SCR) of nitric oxide by ammonia in the presence of oxygen, as well as on their textural and structural properties has been studied. The samples were characterized by XRD, XPS, IR, and BET and porosimetry measurements. The coverage of the TiO2 support by surface polymeric molybdenum species (where molybdenum is octahedrally coordinated) increases with the molybdenum loading. The formation of a layer of these interacting species on top of the titania surface is complete in the range 15–20 wt.-% MoO3. The formation of crystallites of bulk MoO3 starts before the completion of this surface layer (at around 10 wt.-% MoO3) and increases progressively as the molybdenum loading increases from 10 to 20 wt.-% MoO3. The SCR activity of the MoO3/TiO2 catalysts increases as the MoO3 content increases to 15 wt.-% and then, for a further increase of the molybdenum loading, it slightly decreases. No specific influence of the molybdenum content on the resistance of catalysts towards SO2 was observed; the same slight deactivation took place, when the SCR activity was measured in the presence of SO2 in the feed, for all samples. Our results indicate that the octahedrally coordinated polymeric molybdenum surface species are mainly responsible for the exhibited SCR activity of the MoO3/TiO2 catalysts.  相似文献   

5.
Selective catalytic reduction of nitric oxide by ammonia on Fe3+-promoted active carbons was investigated. The catalysts were prepared by the impregnation of active carbon (N/m) preoxidised with concentrated nitric acid at different temperatures. The amount of oxygen-containing surface groups on the supports was determined by infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) while the distribution of active material was investigated using XPS. Catalytic activity of Fe3+-active carbon systems depended on the degree of the oxidation of the supports and pretreatment of the catalysts (drying, calcination in helium). The presence of oxygen in the reaction mixture enhanced the nitric oxide conversion. The catalysts showed a long-term stability.  相似文献   

6.
The catalytic selective reduction of NO over Cu-exchanged natural zeolites (mordenite (MP) and clinoptilolite (HC)) from Cuba using NH3 as reducing agent and in the presence of excess oxygen was studied. Cu(II)-exchanged zeolites are very active catalysts, with conversions of NO of 95%, a high selectivity to N2 at low temperatures, and exhibiting good water tolerance. The chemical state of the Cu(II) in exchanged zeolites was characterized by H2-TPR and XPS. Cu(II)-exchanged clinoptilolite underwent a severe deactivation in the presence of SO2. However, Cu(II)-exchanged mordenite not only maintained its catalytic activity, but even showed a slight improvement after 20 h of reaction in the presence of 100 ppm of SO2.  相似文献   

7.
Cu2+ ion-exchanged pillared clays are substantially more active than Cu2+-ZSM-5 for selective catalytic reduction (SCR) of NO by hydrocarbons. More importantly, H2O (or SO2) has only mild effects on their activities. First results on Cu2+-exchanged TiO2-pillared montmorillonite were reported by this laboratory (Yang and Li, Ref. [1]), that showed overall activities two to four times higher than Cu2+-ZSM-5.

A delaminated pillared clay was subjected to Cu2+ ion-exchange and studied for SCR by C2H4 in this work. The Cu2+ ion-exchanged delaminated Al2O3-pillared clay yielded substantially higher SCR rates than both Cu2+-exchanged TiO2-pillared clay and Cu2+-ZSM-5 at temperatures above 400°C. The peak NO conversion was 90% at 550°C and at a space velocity of 15,000 h−1 (with O2 = 2%). The peak temperature decreased as the concentration of O2 was increased. The macroporosity in the delaminated pillared clay was partially responsible for its higher peak temperatures (than that for laminated pillared clays). At 1000 ppm each for NO and C2H4, the NO conversion peaked at 2% O2 for all temperatures. H2O and SO2 caused only mild deactivation, likely due to competitive adsorption (of SO2 on Cu2+ sites and H2O on acid sites). The high activity of Cu2+-exchanged Al2O3-pillared clay was due to a unique combination of the redox property of the Cu2+ sites and the strong Lewis acidity of the pillared clay. The suggested mechanism involved NO chemisorption (in the presence of O2) on Cu2+OAl3+-on the pillars, and C2H4 activation on the Lewis acid sites to form an oxygenated species.  相似文献   


8.
考察了Pd/Al2O3、In/Al2O3和Co/Al2O3对甲烷选择性还原NO的催化活性。结果表明,采用浸渍法制备的Pd/Al2O3、In/Al2O3和Co/Al2O3三种催化剂,在有氧气氛下,用CH4作还原剂催化还原NO时,Pd/Al2O3催化剂的活性最佳,热稳定性好,在550 ℃,用CH4选择还原NO,Pd/Al2O3催化剂表现出较强的催化能力,NO的转化率达到100%。在高空速实验中,该催化剂亦表现出较高的活性,其活性顺序为Pd/Al2O3>In/Al2O3>Co/Al2O3。实验研究了助催化剂、氧含量以及空速对Pd/Al2O3催化剂活性的影响。  相似文献   

9.
Fluidised bed combustion is an important source of nitrous oxide emissions. The influence of different operating parameters, such as catalyst volume, temperature, gas hourly space velocity, and hydrocarbon addition, on the activity, selectivity, and poisoning tolerance of a Fe-ZSM-5 monolith for the nitrous oxide selective catalytic reduction, has been investigated under realistic conditions, at bench scale.

Both in the absence or in the presence of poisons, such as H2O, NO, and SO2, the optimisation of operating conditions gives rise to a broadening of the temperature window for N2O reduction, making it more compatible with real application conditions, with a simultaneous reduction in hydrocarbon fugitive emission, resulting in an environmental friendly process.

Excessively high reaction temperatures seem to be needed to obtain an acceptable level of N2O decomposition. On the contrary, high N2O reduction conversions are obtained, even in the presence of poisons and at relatively low temperatures, which is the preferred situation in the processes of pollutants removal from stationary combustion sources.

The optimum value of C3H8/N2O ratio to be used for reducing N2O over the catalyst system seems to be about the unity, since higher N2O and C3H8 conversions and lower hydrocarbon unwanted emissions are attained, with a low consume of propane as selective reductant.  相似文献   


10.
The selective catalytic reduction (SCR) of NO by NH3 has been studied over vanadia/ titania catalysts prepared by selective immobilization of vanadyl alkoxide species on two structurally different titania supports. The loading of vanadia was varied from 1.8 to 7.5 ,mol V5+ per m2 surface area. Comparative kinetic measurements at 150 °C show that the NO turnover frequencies increase by more than an order of magnitude when the vanadia loading is increased from 1.8 to 3 mol V5+/m2. In the region of lower SCR activity, i.e. at lower coverages ( 2 mol V5+/m2), small clusters and ribbons of vanadia are detected in the Raman spectra, whereas at loadings where maximum NO turnovers are achieved ( 3 mol V5+/m2) the prevalent vanadia species are well-developed two-dimensional vanadia layers bound to titania.  相似文献   

11.
The method of drying, heat evaporation or spray drying, of the aqueous suspension of starting chemicals has a pronounced effect on the phase composition of the final MoVTeNb catalyst, which ultimately influences the catalytic properties in propane ammoxidation reaction. The sample synthesized by spray drying is active and selective; it contains two main crystalline phases, orthorhombic M1 and hexagonal M2. The activity of the sample prepared by heat evaporation is low. This sample does not contain the active M1 phase and consists of hexagonal M2, TeMo5O16, and Mo5−x(V/Nb)xO14 phases. The different mechanisms of phase composition formation in the samples synthesized by heat evaporation or spray drying arise from the different chemical nature of corresponding solid precursors.  相似文献   

12.
Selective reduction of NO by CH4 in the presence of excess oxygen was investigated using H-form zeolite catalysts. H-ZSM-5, H-ferrierite, and H-mordenite showed high catalytic activity and selectivity. On the contrary, H-USY and Al2O3 were not effective for this reaction. Both NO-CH4 and O2-CH4 reaction hardly proceeded on H-ZSM-5. Higher NOx conversion was obtained in the NO2-O2-CH4 and NO2-CH4 systems than in the NO-O2-CH4 system under high GHSV condition. It seemed that NO2 plays an important role for selective reduction of NO by CH4 on H-form zeolites.  相似文献   

13.
The reduction of nitric oxide by propene in the presence of oxygen over platinum-group metals supported on TiO2, ZnO, ZrO2, and Al2O3 has been investigated by combined diffuse reflectance FT-IR spectroscopy and catalytic activity studies under flow reaction conditions at 523–673 K and atmospheric pressure. The catalytic activity for the selective reduction of nitric oxide and the intensity of the IR bands due to reaction species depended strongly on the nature of the support, type of supported metal, reaction time and temperature. The main surface species detectable by IR were adsorbed hydrocarbons (2900–3080 cm−1), isocyanate (2180, and 2232–2254 cm−1), cyanide (2125 cm−1), nitrosonium (1901 cm−1), CO2 (2343–2357 cm−1), CO (2058 cm−1) and carbonate (1300–1650 cm−1) species. In the case of rhodium containing catalysts, when supported on Al2O3, they exhibited both the highest concentration of surface species and the highest activity for nitric oxide reduction and selectivity to nitrogen. The catalytic activity and the IR intensities of the nitrosonium and isocyanate bands increased with reaction temperature, reached their maximum between 570 and 620 K, and then decreased at higher temperatures. The IR band intensities due to nitrogen containing surface species were found to be strongly correlated to the activity for nitric oxide conversion and only slightly related to the selectivity to dinitrogen.  相似文献   

14.
The oxidative dehydrogenation of propane was investigated using vanadia type catalysts supported on Al2O3, TiO2, ZrO2 and MgO. The promotion of V2O5/Al2O3 catalyst with alkali metals (Li, Na, K) was also attempted. Evaluation of temperature programmed reduction patterns showed that the reducibility of V species is affected by the support acid–base character. The catalytic activity is favored by the V reducibility of the catalyst as it was confirmed from runs conducted at 450–550°C. V2O5/TiO2 catalyst exhibits the highest activity in oxydehydrogenation of propane. The support’s nature also affects the selectivity to propene; V2O5 supported on Al2O3 catalyst exhibits the highest selectivity. Reaction studies showed that addition of alkali metals decreases the catalytic activity in the order non-doped>Li>Na>K. Propene selectivity significantly increases in the presence of doped catalysts.  相似文献   

15.
Platinum and rhodium supported on alumina and titania were synthesized by the sol-gel method. Characterization and catalytic activity for the reduction of nitric oxide by carbon monoxide was performed. In sol-gel ‘sintered/reduced catalysts’ a redispersion of the metal phase and higher resistance to sintering was observed. On the other hand, in the impregnated ‘sintered/reduced catalysts’, an important sintering effect was observed. The sol-gel ‘reduced catalysts’ and ‘sintered/reduced catalysts’ showed higher activity than that of impregnated reference catalysts, mainly when the titania is the support. Moreover, sol-gel preparations are more selective to N2, whereas impregnated reference catalysts are selective to N2O. The increase in dispersion and high resistance to sintering on sol-gel ‘sintered/reduced catalysts’ was interpreted as a surface migration effect of the metal particles buried in alumina and titania gels.  相似文献   

16.
Selective catalytic reduction (SCR) activity for NO conversion to N2 over γ-alumina, vanadia/alumina and molybdena/alumina catalysts has been investigated with methanol (MeOH) and dimethyl ether (DME) as reductants under lean conditions. Molybdena/alumina catalysts showed high efficiency for NO reduction with either reductant, especially at low temperature, which may involve surface formyl produced by oxidative dehydrogenation. Sulphated γ-alumina remains active for NO reduction with MeOH, while sulphated 5 wt.% MoO3/Al2O3 remains active with both MeOH and DME over a broad temperature range.  相似文献   

17.
堇青石蜂窝陶瓷载CuO选择催化还原NO的研究   总被引:1,自引:0,他引:1  
以堇青石蜂窝陶瓷(CC)为载体、CuO和不同助剂为活性组分,用浸渍法制备CuO/CC、CuO-NiO/CC和CuO-NiO-CeO2/CC催化剂, 采用TPR、XRD和XPS等测试方法对催化剂进行表征。TPR结果表明,催化剂主要以Cu2+形式存在。采用程序升温和恒温法在固定床反应器常压条件下研究了以尿素作还原剂还原模拟汽车尾气中的NO。结果显示,CuO-NiO-CeO2/CC催化剂在(150~350) ℃具有较高的活性,250 ℃时具有较高的转化率。  相似文献   

18.
《Catalysis Today》1996,32(1-4):193-204
Novel gallium-containing catalysts for oxidehydrogenation of propane, based on zeolite Beta, ZSM-5 and ferrierite, have been prepared and characterised by scanning electron microscopy, IR, MAS NMR and Raman spectroscopies. The catalytic properties of zeolitic matrixes with B, Al, and both ions at tetrahedral sites have been studied. Transformation of propane on pure zeolites and promoted with gallium (III) oxide depended on the structure of the matrix, its morphology and the type of cations occupying zeolite framework sites. Formation of new hydroxyl groups has been evidenced for some MFI zeolites promoted with Ga2O3.  相似文献   

19.
A stable Fe(4-TMPyP)-DNA-PADDA (FePyDP) film was prepared on pyrolytic graphite electrode (PGE) through the supramolecular interaction between water-soluble iron(III) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (Fe(4-TMPyP)) and DNA template, where PADDA (poly(acrylamide-co-diallyldimethylammonium chloride)) is employed as a co-immobilizing polymer. Electronic absorption spectral and quartz crystal microbalance measurements revealed that Fe(4-TMPyP) interacted with DNA to generate a species with the molar ratio of 1:5 for Fe(4-TMPyP):DNA phosphate. Cyclic voltammetry of FePyDP film showed a pair of stable and reversible peaks corresponding to FeIII/FeII redox potential of −0.13 V versus Ag|AgCl in pH 7.4 PBS. The electron transfer was expected across the double-strand of DNA by an “electron tunneling” mechanism. The modified electrode displayed an excellent catalytic activity for NO reduction at −0.61 V versus Ag|AgCl. The catalytic current was enhanced at lower pH. Chronoamperometric experiments demonstrated a rapid response to the reduction of NO with a linear range from 0.1 to 90 μM. The detection limit was 30 nM at a signal-to-noise ratio of 3.  相似文献   

20.
The influence of potassium on the structure and properties of alumina-supported vanadium oxide catalysts has been studied by in situ Raman spectroscopy, temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), a probe reaction of acid/base–redox sites (methanol chemisorption) and tested in oxidative dehydrogenation (ODH) of propane. Potassium coordinates to surface vanadium oxide species altering its structure but does not form bulk compounds, possibly because the total V+K coverage does not reach the monolayer coverage on alumina. The interaction of K with V weakens the terminal V=O bond. K-doped alumina (KAl)-supported vanadia catalysts show lower acidity, a decrease of reducibility and a decrease of propane conversion values. These trends do not correspond with the changes in the terminal V=O bond energy. Thus, it appears that the terminal V=O bond of surface vanadium oxide species is not the active site for propane ODH, oxidation of methanol to formaldehyde and for the reduction of surface vanadium oxide species by hydrogen. Potassium also changes the acid–base characteristic of the system and decreases the acidic character of surface vanadia. This shift in the acid–base character to a more basic system must also account for the better selectivity in propane ODH due to a variation in the interaction between the intermediates and the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号