首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fuel oxygenate methyl tert-butyl ether (MTBE) has been frequently detected in groundwater and surface water. Since contaminated sites are often subsurface, anaerobic degradation of MTBE will likely be significant for remediation. As traditional approaches to evaluate biodegradation generally involve laboratory microcosm studies which require time and resources, innovative approaches are needed to demonstrate active in situ biodegradation of MTBE. This study was conducted to gather information at the laboratory level to evaluate the potential of applying carbon isotope fractionation as an indicator for in situ biodegradation of the fuel oxygenates MTBE and tert-amyl methyl ether (TAME). In this study, MTBE utilization was observed in a methanogenic sediment microcosm after a lengthy lag period of about 400 days. MTBE utilization was sustained upon refeeding and subculturing. tert-Butyl alcohol (TBA) was found to accumulate after propagation of cultures. The MTBE-grown cultures also utilized TAME and produced tert-amyl alcohol (TAA). The detection of TBA and TAA indicated that ether bond cleavage was the initial step in degradation for both compounds. Carbon isotope fractionation during anaerobic MTBE and TAME degradation was studied, and isotopic enrichment factors (epsilon) with 95% confidence intervals of -15.6 +/-4.1% and -13.7+/-4.5% were estimated for anaerobic MTBE and TAME degradation, respectively. Addition of 2-bromoethanesulfonic acid, an inhibitor of methanogenesis, substantially prolonged the lag period before transformation, but did not influence carbon isotope fractionation. Our experiment provided strong evidence of significant carbon isotope fractionation during anaerobic MTBE and TAME degradation, demonstrating that this technique can be used as an indicator for in situ MTBE and TAME degradation.  相似文献   

2.
Concentrations measured in alfalfa plant stem segments indicated that plants grown in methyl tert-butyl ether (MTBE)-contaminated soil took up the chemical through their roots. Assuming a cylindrical shape for the plant stem, a mathematical model was developed to describe the transport of MTBE through the stems. Simulation results from uniform and nonuniform initial concentration distributions across the stem radius were compared with steady-state experimental data. With known values of plant stem radius, water usage, water content, and the distance over which the concentration decreased by 50%, the diffusion coefficient of MTBE radial transport across the plant stem was estimated with 95% confidence to be in the range of 8.43-16.2 x 10(-8) cm2/s with a mean of 1.23 x 10(-7) cm2/s. When the diffusion coefficient was calculated based on transient experimental data, the values with 95% confidence interval ranged from 4.14 x 10(-7) to 8.00 x 10(-7) cm2/s with a mean value of 6.07 x 10(-7) cm2/s. The difference between these two results can be reduced by more accurate estimation of the water flow velocity through plant stems. The model is applicable to other species including sunflowers and poplars upon substitution of appropriate parameters.  相似文献   

3.
The chemical kinetics of the free-radical-induced degradation of the gasoline oxygenate methyl tert-butyl ether (MTBE) in water have been investigated. Rate constants for the reaction of MTBE with the hydroxyl radical, hydrated electron, and hydrogen atom were determined in aqueous solution at room temperature, using electron pulse radiolysis and absorption spectroscopy (*OH and e- aq) and EPR free induction decay attenuation (*H) measurements. The rate constant for hydroxyl radical reaction of (1.71 +/- 0.02) x 10(9) M(-1) s(-1) showed that the oxidative process was the dominant pathway, relative to MTBE reaction with hydrogen atoms, (3.49 +/- 0.06) x 10(6) M(-1) s(-1), or hydrated electrons, <8.0 x 10(6) M(-1) s(-1). The hydroxyl radical reaction gives a transient carbon-centered radical which subsequently reacts with dissolved oxygen to form peroxyl radicals, the rate constant for this reaction was (2.17 +/- 0.06) x 10(9) M(-1) s(-1). The second-order decay of the MTBE peroxyl radical was 2k = (6.0 +/- 0.3) x 10(8) M(-1) s(-1). These rate constants, along with preliminary MTBE degradation product distribution measurements, were incorporated into a kinetic model that compared the predicted MTBE removal from water against experimental measurements performed under large-scale electron beam treatment conditions.  相似文献   

4.
Degradation of methyl tert-butyl ether (MTBE) vapors by cometabolism with pentane using a culture of pentane-oxidizing bacteria (Pseudomonas aeruginosa) was studied in a 2.4-L biofilter packed with vermiculite, an inert mineral support. Experimental pentane elimination capacity (EC) of approximately 12 g m(-3) h(-1) was obtained for an empty bed residence time (EBRT) of 1.1 h and inlet concentration of 18.6 g m(-3). For these experimental conditions, EC of MTBE between 0.3 and 1.8 g m(-3) h(-1) were measured with inlet MTBE concentration ranging from 1.1 to 12.3 g m(-3). The process was modeled with general mass balance equations that consider a kinetic model describing cross-competitive inhibition between MTBE (cosubstrate) and pentane (substrate). The experimental data of pentane and MTBE removal efficiencies were compared to the theoretical predictions of the model. The predicted pentane and MTBE concentration profiles agreed with the experimental data for steady-state operation. Inhibition by MTBE of the pentane EC was demonstrated. Increasing the inlet pentane concentration improved the EC of MTBE but did not significantly change the EC of pentane. MTBE degradation rates obtained in this study were much lower than those using consortia or pure strains that can mineralize MTBE. Nevertheless, the system can be improved by increasing the active biomass.  相似文献   

5.
Bank filtration of river or lake water represents an efficient and natural purification process used for the drinking water production in many countries and at an amount of about 15-16% in Germany. From experiences over decades particularly at the river Rhine and Elbe, it is known that the occurrence of persistent pollutants in river water can represent a problem for the quality of drinking water produced by bank filtration. The common detection of the gasoline additive methyl tert-butyl ether (MTBE) in drinking water and the announced phase-out of the oxygenate in the U.S. show that MTBE can contaminate large water amounts due to its physicochemical properties. The MTBE situation in the U.S differs from Europe, and significantly lower concentrations in the German environment can be expected. Average MTBE concentrations of 200-250 ng/L in the Lower Main and Lower Rhine river in 2000/2001 were reported. At two sites at the Lower Rhine and Lower Main rivers MTBE concentrations in bank filtered water (n = 22), recovering well water, raw water, and drinking water produced by the water utility at the Lower Rhine site (n = 30) and tap water at Frankfurt/M City (n = 13) were analyzed from 1999 to 2001. Sample analysis is performed by a combination of headspace-solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC/MS) with a detection limit of 10 ng/L and a relative standard deviation of 11%. At the Lower Rhine site up to 80 m from the river an average MTBE concentration of 88 ng/L in riverbank filtered water, recovering well water, and raw water (n = 7) and of 43-110 ng/L in drinking water (n = 3) result. At the Lower Main site up to 400 m from the river MTBE concentrations from 52 to 250 ng/L (n = 7) were measured. Tap water samples at Frankfurt/M (mean of 35 ng/L, maximum of 71 ng/L) were in the same range as MTBE amounts in drinking water at the Lower Rhine site. Measured MTBE amounts eliminated by bank filtration at the Lower Rhine site are comparable to other contaminants. The results of this study show that concentrations measured in river water and drinking water are approximately 2-3 orders of magnitude lower than the U.S. drinking water standard of 20-40 microg/L, represent trace-level concentrations, and are not of major concern nowadays. However, the unfavorable combination of the occurrence of nonpoint MTBE emissions and the persistent behavior of the ether in water even at low concentrations should not be neglected in future discussion. The reported MTBE concentrations are relevant for precautionary aspects. MTBE concentrations in German river water show a tendency toward increasing concentrations since 1999, and in the future possible higher concentrations could represent a risk for the quality of drinking water that is being produced by water utility using bank filtered river water.  相似文献   

6.
Forward osmosis (FO) is a membrane separation technology that has been studied in recent years for application in water treatment and desalination. It can best be utilized as an advanced pretreatment for desalination processes such as reverse osmosis (RO) and nanofiltration (NF) to protect the membranes from scaling and fouling. In the current study the rejection of trace organic compounds (TOrCs) such as pharmaceuticals, personal care products, plasticizers, and flame-retardants by FO and a hybrid FO-RO system was investigated at both the bench- and pilot-scales. More than 30 compounds were analyzed, of which 23 nonionic and ionic TOrCs were identified and quantified in the studied wastewater effluent. Results revealed that almost all TOrCs were highly rejected by the FO membrane at the pilot scale while rejection at the bench scale was generally lower. Membrane fouling, especially under field conditions when wastewater effluent is the FO feed solution, plays a substantial role in increasing the rejection of TOrCs in FO. The hybrid FO-RO process demonstrated that the dual barrier treatment of impaired water could lead to more than 99% rejection of almost all TOrCs that were identified in reclaimed water.  相似文献   

7.
The potential for anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) was investigated in laboratory incubations of sediments from a petroleum-contaminated aquifer and in aquatic sediments. The addition of humic substances (HS) stimulated the anaerobic degradation of MTBE in aquifer sediments in which Fe(III) was available as an electron acceptor. This is attributed to the fact that HS and other extracellular quinones can stimulate the activity of Fe(III)-reducing microorganisms by acting as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. MTBE was not degraded in aquifer sediments without Fe(III) and HS. [14C]-MTBE added to aquatic sediments adapted for anaerobic MTBE degradation was converted to 14CO2 in the presence or absence of HS or the HS analog, anthraquione-2,6-disulfonate. Unamended aquatic sediments produced 14CH4 as well as 14CO2 from [14C]-MTBE. The aquatic sediments also rapidly consumed TBA under anaerobic conditions and converted [14C]-TBA to 14CH4 and 14CO2. An adaptation period of ca. 250-300 days was required prior to the most rapid anaerobic MTBE degradation in both sediment types, whereas TBA was metabolized in the aquatic sediments without a lag. These results demonstrate that, under the appropriate conditions, MTBE and TBA can be degraded in the absence of oxygen. This suggests that it may be possible to design strategies for the anaerobic remediation of MTBE in petroleum-contaminated subsurface environments.  相似文献   

8.
Bifunctional aluminum is prepared by sulfating aluminum metal with sulfuric acid. The use of bifunctional aluminum to degrade methyl tert-butyl ether (MTBE) in the presence of dioxygen has been examined using batch systems. Primary degradation products were tert-butyl alcohol, tert-butyl formate, acetone, and methyl acetate. The initial rate of MTBE degradation exhibited pseudo-first-order behavior, and the half-life of reaction was less than 6 h. XPS analysis indicates the formation of sulfate at the surface of bifunctional aluminum. The concentration of surface sulfate varies linearly with increasing strength of the sulfuric acid used during bifunctional aluminum preparation. The rate of MTBE degradation is a function of the concentration of the surface sulfate. MTBE degradation rates increased by a factor of 2 as surface sulfate concentrations increased from 233 to 641 micromol/m2. This relationship implies that sulfate at the surface of bifunctional aluminum acts as a reactive site.  相似文献   

9.
Carbon and hydrogen isotopic fractionation during aerobic biodegradation of MTBE by a bacterial pure culture (PM1) and a mixed consortia from Vandenberg Air Force Base (VAFB) were studied in order to assess the relative merits of stable carbon versus hydrogen isotopic analysis as an indicator of biodegradation. Carbon isotopic enrichment in residual MTBE of up to 8.1/1000 was observed at 99.7% biodegradation. Carbon fractionation was reproducible in the PM1 and VAFB experiments, yielding similar enrichment factors (epsilon) of -2.0/1000 +/- 0.1/1000 to -2.4/1000 +/- 0.3/1000 for replicates in the PM1 experiment and -1.5/1000 +/- 0.1/1000 to -1.8/1000 +/- 0.1/1000 for replicates in the VAFB experiment. Hydrogen isotopic fractionation was highly reproducible for the PM1 pure cultures, with epsilon values of -33/1000 +/- 5/1000 to -37/1000 +/- 4/1000 for replicate samples. In the VAFB microcosms, there was considerably more variability in epsilon values, with values of -29/1000 +/- 4/1000 and -66/1000 +/- 3/1000 measured for duplicate sample bottles. Despite this variability, hydrogen isotopic fractionation always resulted in 2H enrichment of the residual MTBE of >80/1000 at 90% biodegradation. The reproducible carbon fractionation suggests that compound-specific carbon isotope analysis may be used to estimate the extent of biodegradation at contaminated sites. Conversely, the large hydrogen isotopic fractionation documented during biodegradation of MTBE suggests that compound-specific hydrogen isotope analysis offers the most conclusive means of identifying in-situ biodegradation at contaminated sites.  相似文献   

10.
Plasma treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. This study examines the kinetic and oxidation mechanisms of methyl tert-butyl ether (MTBE) in a dense medium plasma (DMP) reactor utilizing gas chromatography-mass spectrometry and gas chromatography-thermal conductivity techniques. A rate law is developed for the removal of MTBE from an aqueous solution in the DMP reactor. Rate constants are also derived for three reactor configurations and two pin array spin rates. The oxidation products from the treatment of MTBE-contaminated water in the DMP reactor were found to be predominately carbon dioxide, with smaller amounts of acetone, tert-butyl formate, and formaldehyde. The lack of stable intermediate products suggests that the MTBE is, to some extent, oxidized directly to carbon dioxide, making the DMP reactor a promising tool in the future remediation of water. Chemical and physical mechanisms together with carbon balances are used to describe the formation of the oxidation products and the important aspects of the plasma discharge.  相似文献   

11.
Through its extensive use as a fuel oxygenate, methyl tert-butyl ether (MTBE) is found nearly ubiquitouslythroughout the environment. To better understand the environmental fate of MTBE, fugacity models are commonly used. However, models developed by the scientific community and by governmental bodies differ in their predictions of relative MTBE concentrations for relevant environmental compartments and of seasonal concentration variations; further, to date they have not considered the formation of transformation products. In this study, the sensitivity of predicted environmental concentrations of MTBE and its two major degradation products, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), to all types of model input parameters is analyzed in a probabilistic sensitivity analysis. This analysis allowed for an assessment of the most influential parameters for predicting soil, water, and air concentrations and thereby provided insight into why previous modeling studies on MTBE differed. Further, the information from the sensitivity analysis was used to parametrize a multispecies transformation model for predicting European concentration levels of MTBE and, for the first time, TBF and TBA. Water and air concentrations of MTBE predicted with the transformation model were in good agreement with measurements of environmental samples. No studies are available on environmental TBF and TBA levels to compare with model predictions; however, the modeling results indicate that, in the water phase, TBA concentrations may reach appreciable levels. One major uncertainty identified regarding the prediction of TBA levels was the fraction of TBA formed from atmospheric MTBE and TBF.  相似文献   

12.
Recently, two papers reported the use of solid-phase microextraction (SPME) with poly(dimethylsiloxane)(PDMS)/Carboxen fibers to determine trace levels of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (tBA) in water. Attempts were made to apply this technique to the analysis of water samples containing high levels of benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes (BTEXsTMBs) as would be expected at leaking underground storage tank sites. It was found that when the sample contained total aromatic compounds above 1 ppm, the response of the internal standards, deuterated MTBE and tBA, dropped by more than 65%. As this decrease in internal standard peak area was unacceptable, a static headspace method was used instead. This headspace method was used successfully to analyze groundwater from 670 monitoring wells at 74 service stations located in the northeast United States. In these monitoring wells, 30% of the samples contained total BTEXsTMBs above 1 ppm. If the SPME method was used to analyze these samples, dilution of more than 200 samples would be required to minimize the adverse matrix effect that high aromatic content had on the internal standard peak area.  相似文献   

13.
tert-Butyl methyl ether (MTBE) is generally considered to be resistant to chemical transformation in aqueous solution. This lack of reactivity has led to concerns of the long-term impacts of MTBE in groundwater. Although hydrolysis in the presence of strong acids has been recognized as a mechanism for MTBE transformation, it has been discounted as a significant reaction under environmental conditions. In this study, we have examined the fate of MTBE and other ether oxygenates under moderately acidic conditions (> or=pH 1). The results demonstrate that MTBE is sensitive to acid-catalyzed hydrolysis reaction that generates tert-butyl alcohol (TBA) and methanol as products. The reaction is first-order with respect to the concentration of MTBE and hydronium ion with a second-order rate constant of about 0.9 x 10(-2) M(-1) h(-1) at 26 degrees C. Commercially available acidic ion-exchange resins were also shown to catalyze the hydrolysis of MTBE at near neutral pH. Pseudo-first-order rate constants were observed to be as high as 0.03 h(-1) at 25 degrees C and 0.12 h(-1) at 35 degrees C. These findings are discussed in terms of their possible implications for the treatment and environmental fate of MTBE and other gasoline oxygenates.  相似文献   

14.
Methyl group oxidation, SN2-type hydrolysis, and SN1-type hydrolysis are suggested as natural transformation mechanisms of MTBE. This study reports for the first time MTBE isotopic fractionation during acid hydrolysis and for oxidation by permanganate. In acid hydrolysis, MTBE isotopic enrichment factors were epsilon(C) = -4.9 per thousand +/- 0.6 per thousand for carbon and epsilon(H) = -55 per thousand +/- 7 per thousand for hydrogen. Position-specific values were epsilon(C), reactive position = -24.3 per thousand +/- 2.3 oer thousand and epsilon(H,reactive position) = -73 per thousand +/- 9 per thousand, giving kinetic isotope effects KIE(C) = 1.025 +/- 0.003 and KIE(H) = 1.08 +/- 0.01 consistent with an SN1-type hydrolysis involving the tert-butyl group. The characteristic slope of deltadelta2H(bulk)/deltadelta13C(bulk) approximately epsilon(bulk,H)/ epsilon(bulk,C) = 11.1 +/- 1.3 suggests it may identify SN1-type hydrolysis also in settings where the pathway is not well constrained. Oxidation by permanganate was found to involve specifically the methyl group of MTBE, similar to aerobic biodegradation. Large hydrogen enrichment factors of epsilon(H) = -109 per thousand +/- 9 per thousand and epsilon(H,reactive position) = -342 per thousand +/- 16 per thousand indicate both large primary and large secondary hydrogen isotope effects. Significantly smaller values reported previously for aerobic biodegradation suggest that intrinsic fractionation is often masked by additional non-fractionating steps. For conservative estimates of biodegradation at field sites, the largest epsilon values reported should, therefore, be used.  相似文献   

15.
Methyl tert-butyl ether (MTBE), the most common gasoline oxygenate, is frequently detected in surface water and groundwater. The aim of this study was to evaluate the potential of compound-specific isotope analysis to assess in situ biodegradation of MTBE in groundwater. For that purpose, the effect of relevant physical and biological processes on carbon isotope ratios of MTBE was evaluated in laboratory studies. Carbon isotope fractionation during organic phase/gas-phase partitioning (0.50 +/- 0.15@1000), aqueous phase/gas-phase partitioning (0.17 +/- 0.05@1000), and organic phase/aqueous-phase partitioning (0.18 +/- 0.24@1000) was small in comparison to carbon isotope fractionation measured during biodegradation of MTBE in microcosms based on aquifer sediments of the Borden site. In experiments with MTBE as the only substrate and a cometabolic experiment with 3-methypentane as primary substrate, MTBE became enriched in 13C by 5.1 to 6.9@1000 after 95 to 97% degradation. For both experiments, similar isotopic enrichment factors were obtained (-1.52 +/- 0.06 to -1.97 +/- 0.05@1000). Biodegradation of TBA, which accumulated transiently in the cometabolic microcosms, was also accompanied by carbon isotope fractionation, with an isotopic enrichment factor of -4.21 +/- 0.07@1000. This study suggests that carbon isotope analysis is a potential tool to trace in situ biodegradation of MTBE and TBA and thus to better understand the fate of these contaminants in the environment.  相似文献   

16.
This study evaluated the individual and combined removal capacities of benzene, toluene, and xylene (B, T, and X) in the presence and absence of methyl tert-butyl ether (MTBE) in a polyurethane biofilter inoculated with a BTX-degrading microbial consortium, and further examined their interactive effects in various mixtures. In addition, Polymerase chain reaction-denaturing gradient gel electrophoresis and phylogenetic analysis of 16S rRNA gene sequences were used to compare the microbial community structures found in biofilters exposed to the various gases and gas mixtures. The maximum individual elimination capacities (MECs) of B, T, and X were 200, 238, and 400 g m(-3) h(-1), respectively. There was no significant elimination of MTBE alone. Addition of MTBE decreased the MECs of B,T, and X to 75, 100, and 300 g m(-3) h(-1), respectively, indicating that benzene was most strongly inhibited by MTBE. When the three gases were mixed (B + T + X), the removal capacities of individual B, T, and X were 50, 90, and 200 g m(-3) h(-1), respectively. These capacities decreased to 40, 50, and 100 g m(-3) h(-1) when MTBE was added to the mix. The MEC of the three-gas mixture (B + T + X) was 340 g m(-3) h(-1), and that of the four-gas mixture was 200 g m(-3) h(-1). Although MTBE alone was not degraded by the biofilter, it could be co-metabolically degraded in the presence of toluene, benzene, or xylene with the MECs of 34, 23, and 14 g m(-3) h(-1), respectively. The microbial community structure analysis revealed that two large groups could be distinguished based on the presence or absence of MTBE, and many of the dominant bacteria in the consortia were closely related to bacteria isolated from aromatic hydrocarbon-contaminated sites and/ or oil wastewaters. These findings provide important new insights into biofiltration and may be used to improve the rational design of biofilters for remediation of petroleum gas-contaminated airstreams according to composition types of mixed gases.  相似文献   

17.
18.
The U.S. Environmental Protection Agency (EPA) now requires monitoring of oxygenate compounds in groundwater at leaking underground storage tank (LUST) sites nationwide. Three purge-and-trap gas chromatography methods most commonly employed for this purpose were tested, and their performance as a function of total petroleum hydrocarbon (TPH) content of the sample matrix was determined. Tests included a formal method evaluation, a round-robin study, and a split-sample study (424 groundwater samples). Consistently good results were achieved with EPA Method 8240B/60B (mass spectrometry) and ASTM Method D4815 (flame ionization detection) when five oxygenates were monitored in reagent water and gasoline. However, one protocol routinely employed for analysis of LUST samples had serious limitations: EPA Method 8020A/21B (photoiozination detection) was unfit for monitoring of tert-butyl alcohol (TBA) and frequently yielded false-positive (12-50% of samples) and inaccurate results when ether oxygenates were monitored in aqueous samples containing high concentrations of TPH (> 1,000 microg/ L). Thus, care should be taken in the analysis of LUST databases populated with EPA Method 8020/21 data because results reported for methyl tert-butyl ether (MTBE) in samples containing high levels of TPH have a high likelihood of being inaccurate or false-positive. For all three methods, detection limits determined in reagent water were sufficiently low for monitoring MTBE at the stringent primary (13 microg/L) and secondary (5 microg/L) action levels set by the state of California.  相似文献   

19.
The extent of methyl tert-butyl ether (MTBE) contamination in private wells near gasoline stations, which lack the relative protection afforded many public waters supplies through zoning and routine testing, was examined. Samples were collected from 74 private wells near 21 randomly selected gasoline stations and from 21 control wells, one per facility. Two hypotheses are tested: (1) private wells downgradient and close (<0.5 mi) to gasoline stations (case wells) are more likely to have MTBE contamination than private wells upgradient and distant (>1.5 mi) (control wells); and (2) private wells near gasoline stations selling oxygenated gasoline are more likely to have MTBE contamination than private wells near gasoline stations selling conventional gasoline. Data on the concurrence of MTBE and other gasoline constituents are presented. RESULTS: MTBE concentrations ranged from <1.0 micro/L (microg/L) to 61 microg/L, with a mean of 12.0 microg/L. MTBE contamination of > or =1 microg/L was detected more frequently in case wells (28%) than control wells (5%) (p = 0.015). MTBE contamination of > or =1 microg/L occurred more frequently in private wells near facilities selling oxygenated gasoline (38%) than private wells near facilities selling conventional gasoline (20%) (p = 0.11). Statistical significance may have been achieved with a larger sample size. Benzene (0.5 microg/L) was found concurrently with MTBE in only one well, which also had the highest concentration of MTBE.  相似文献   

20.
Apple pomace, a residue from juice or cider production, shows high content of exploitable polyphenols. In this work, apple pomace was submitted to an Ultrasound-Assisted Extraction (UAE) in order to produce extracts rich in antioxidants. After a preliminary study, a solid/liquid ratio of 150 mg of dry material per mL was used, and optimized conditions obtained by response surface methodology for polyphenols water-extraction were 40 °C, 40 min and 0.764 W/cm2. A comparison showed Total Phenolics Content (TPC) obtained by UAE was 30% higher than the content obtained by Conventional Extraction (CE)(555 and 420 mg of catechin equivalent per 100 g of dry weight, respectively) and both methods presented the same extraction kinetics. Furthermore, extracts obtained by ultrasound showed higher antioxidant activity, which was confirmed by HPLC analysis, that revealed main polyphenols were not degraded under the applied conditions. The large scale experiments of this ultrasound procedure showed a potential industrial application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号