首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetics of Cr(VI) reduction by carbonate green rust   总被引:1,自引:0,他引:1  
The kinetics of Cr(VI) reduction to Cr(III) by carbonate green rust were studied for a range of reactant concentrations and pH values. Carbonate green rust, [FeII4FeIII2(OH)12][4H2O x CO3], was synthesized by induced hydrolysis (i.e., coprecipitation) of an Fe(ll)/Fe(III) solution held at a constant pH of 8. An average specific surface area of 47 +/- 7 m2 g(-1) was measured for five separate batches of freeze-dried green rust precipitate. Heterogeneous reduction by Fe(II) associated with the carbonate green rust appears to be the dominant pathway controlling Cr(VI) loss from solution. The apparent stoichiometry of the reaction between ferrous iron associated with green rust ([Fe(II)GR]) and Cr(VI) was slightly higherthan the expected 3:1 ratio, possibly due to the presence of other oxidants, such as oxygen, protons, or interlayer carbonate ions. The rate of Cr(VI) reduction was proportional to the green rust surface area concentration, and psuedo-first-order rate coefficients (kobs) ranging from 1.2 x 10(-3) to 11.2 x 10(-3) s(-1) were determined. The effect of pH was small with a 5-fold decrease in rate with increasing pH (from 5.0 to 9.0). At low Cr(VI) concentrations (<200 microM), the rate of reaction was first order with respect to Cr(VI) concentration, whereas, at high Cr(VI) concentrations, rates appearto deviate from first-order kinetics and approach a constant value. Estimated amounts of surface Fe(II) and total Fe(II) suggest that the deviation from first-order kinetics observed at higher Cr(VI) concentrations and the 50-fold decrease in rate observed upon three sequential exposures to Cr(VI) is due to exhaustion of available Fe(II).  相似文献   

2.
Surfactant-templated thiol-functionalized mesoporous silica adsorbents have been prepared by cocondensation of mercaptopropyltrimethoxysilane and tetraethoxysilane in the presence of cetyltrimethylammonium bromide, which were then partially oxidized to get bifunctionalized materials containing both thiol and sulfonic acid moieties (MCM-41-SH/SO3H). The resulting organic-inorganic hybrid was applied to the uptake of chromium species according to a reduction-sorption mechanism involving reduction of Cr(VI) by thiol groups and immobilization of Cr(III) onto sulfonic acid moieties. These processes were strongly affected by pH, and the optimal conditions for effective chromium sequestration resulted from a compromise between pH values low enough to ensure quantitative reduction of Cr(VI) and not too low to enable Cr(III) binding to sulfonate groups, which was best achieved at pH 2-3. The effect of the solid-to-solution ratio and the relative amounts of -SH and -SO3H groups was also discussed. Even if Cr(VI) reduction by thiol groups resulted in the formation of sulfonic acid moieties, their contentwas not high enough to ensure quantitative Cr(III) immobilization, which was only attained with materials containing already some sulfonic acid groups prior to contacting Cr(VI) solutions. Redox speciation of sulfur and chromium species was analyzed by X-ray photoelectron spectroscopy (XPS) and used to support the proposed mechanism.  相似文献   

3.
This study investigated Cr(VI) reduction by dissolved Fe(II) in hyperalkaline pH conditions as found in fluid wastes associated with the U.S. nuclear weapons program. The results show that Cr(VI) reduction by Fe(II) at alkaline pH solutions proceeds very quickly. The amount of Cr(VI) removed from solution and the amount reduced increases with Fe(II):Cr(VI) ratio. However, the Cr(VI) reduction under alkaline pH condition is nonstoichiometric, probably due to Fe(II) precipitation and mixed iron(III)-chromium-(III) (oxy)hydroxides blocking Fe(II) surface sites, as well as removing Fe(II) from solution through O2 oxidation. After Cr(VI) was reduced to Cr(III), it precipitated out as mixed Fe(x)Cr1-xO3(solids) and various Fe(III) precipitates with an overall Cr:Fe ratio of 1:3; all Cr remaining in the solution phase was unreduced Cr(VI). EXAFS data showed that Cr-O and Cr-Cr distances in the precipitates equal to 1.98 and 3.01 A, respectively, consistent with the spinel-type structure as chromite.  相似文献   

4.
Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal   总被引:3,自引:0,他引:3  
The kinetics of nitrate, nitrite, and Cr(VI) reduction by three types of iron metal (Fe0) were studied in batch reactors for a range of Fe0 surface area concentrations and solution pH values (5.5-9.0). At pH 7.0, there was only a modest difference (2-4x) in first-order rate coefficients (k(obs)) for each contaminant among the three Fe0 types investigated (Fisher, Peerless, and Connelly). The k(obs) values at pH 7.0 for both nitrite and Cr(VI) reduction were first-order with respect to Fe0 surface area concentration, and average surface area normalized rate coefficients (kSA) of 9.0 x 10(-3) and 2.2 x 10(-1) L m(-2) h(-1) were determined for nitrite and Cr(VI), respectively. Unlike nitrite and Cr(VI), Fe0 surface area concentration had little effect on rates of nitrate reduction (with the exception of Connelly Fe0, which reduced nitrate at slower rates at higher Fe0 surface areas). The rates of nitrate, nitrite, and Cr(VI) reduction by Fisher Fe0 decreased with increasing pH with apparent reaction orders of 0.49 +/- 0.04 for nitrate, 0.61 +/- 0.02 for nitrite, and 0.72 +/- 0.07 for Cr(VI). Buffer type had minimal effects on reduction rates, indicating that pH was primarily responsible for the differences in rate. At high pH values, Cr(VI) reduction ceased after a short time period, and negligible nitrite reduction was observed over 48 h.  相似文献   

5.
The probable relation between diffuse double-layer processes and redox reactions that enhance degradation or conversion of contaminants under an applied electric field were examined in a clay medium. Kaolinite clay, precontaminated with hexavalent chromium, was the test soil medium. Analyte, containing ferrous iron, was transported through the kaolinite clay using direct electric current. The Cr(VI) reduction to Cr(III) was followed by measuring the soil redox potential and pH at discrete locations in the clay bed. The post-test distribution of Cr showed significantly more Cr(III) than Cr(VI) at low to slightly acidic pH distribution (2 < pH < 6) in clay. The stoichiometric analyses of measured chromium and iron species concentrations versus the measured redox potentials were compared to Nernst equation predictions of an equivalent aqueous system. An average of +0.37 V shift was measured from the linear Nernstian prediction of cell potential. The applied electric field appeared to provide additional "cathodic current" to drive forth the redox reactions. The redox potential shift was explained by possible overpotential development at the clay-water interfaces due to double-layer polarization under the applied field.  相似文献   

6.
In Situ Gaseous Reduction (ISGR) using hydrogen sulfide (H2S) is a technology developed for soil remediation by reductive immobilization of contaminants such as hexavalent chromium (Cr(VI)). Deploying the technology requires us to obtain a much-improved understanding of the interactions among the contaminants, H2S, and various soil components. In this study, Cr(VI) reduction by gaseous H2S was examined under various relative humidities (0-96.7%), concentrations of Cr(VI) (127-475 microg/g of solid), and H2S (0-800 ppm(v)) and by using Cr(VI) compounds with different solubilities. Glass beads with various average diameters (GA = 0.600 mm; GB = 0.212-0.300 mm; and GC = 0.106 mm) and silica (SA = 0.075-0.150 mm) were used as matrices to support K2CrO4, CaCrO4, PbCrO4, or BaCrO4, and reduction of these compounds by gaseous H2S was monitored by Cr(VI) analysis following extractions with distilled water or hot alkali solution. The results showed that Cr(VI) reduction relied on both the relative humidity of the gaseous stream and the size of particles onto which Cr(VI) was deposited. The relative humidity required for fast Cr(VI) reduction was 85% for GA, 61% for GB, 6% for SA, and 0% for GC. It was believed that a water film formed on the particle surfaces under appropriate humidity conditions, resulting in Cr(VI) compound dissolution and subsequent reduction. For nonsoluble Cr(VI) compounds including PbCrO4 and BaCrO4, no reduction by H2S was observed, even at high relative humidity (96.7%), due to lack of dissolution. This study indicated that ISGR treatment in soils requires appropriate moisture content in the subsurface or maintaining a suitable humidity in the treatment gas stream to maximize chromium immobilization.  相似文献   

7.
Here we report the simultaneous Cr(VI) reduction and 4-chlorophenol (4-CP) oxidation in water under visible light (wavelength > 400 nm) using commercial Degussa P25 TiO2. This remarkable observation was attributed to a synergistic effect among TiO2, Cr(VI), and 4-CP. It is well known that TiO2 alone cannot remove either 4-CP or Cr(VI) efficiently under visible light. Moreover, the interaction between Cr(VI) and 4-CP is minimal if not negligible. However, we found that the combination of TiO2, Cr(VI), and 4-CP together can enable efficient Cr(VI) reduction and 4-CP oxidation under visible light. The specific roles of the three ingredients in the synergistic system were studied parametrically. It was found that optimal concentrations of Cr(VI) and TiO2 exist for the Cr(VI) reduction and 4-CP oxidation. Cr(VI) was compared experimentally with other metals such as Cu(ll), Fe(lll), Mn(IV), Ce(IV), and V(V). Among all these metal ions, only Cr(VI) promotes the photocatalytic oxidation of 4-CP. The amount of 4-CP removed was directly related to the initial concentration of Cr(VI). The system was also tested with four other chemicals (aniline, salicylic acid, formic acid, and diethyl phosphoramidate). We found that the same phenomenon occurred for organics containing acid and/or phenolic groups. Cr(VI) was reduced at the same time as the organic chemicals being oxidized during photoreaction under visible light. The synergistic effect was also found with pure anatase TiO2 and rutile TiO2. This study demonstrates a possible economical way for environmental cleanup under visible light.  相似文献   

8.
In zerovalent iron treatment systems, the presence of multiple solution components may impose combined effects that differ from corresponding individual effects. The copresence of humic acid and hardness (Ca2+/Mg2+) was found to influence Cr(VI) reduction by Feo and iron dissolution in a way different from their respective presence in batch kinetics experiments with synthetic groundwater at initial pH 6 and 9.5. Cr(VI) reduction rate constants (k(obs)) were slightly inhibited by humic acid adsorption on iron filings (decreases of 7-9% and 10-12% in the presence of humic acid alone and together with hardness, respectively). The total amount of dissolved Fe steadily increased to 25 mg L(-1) in the presence of humic acid alone because the formation of soluble Fe-humate complexes appeared to suppress iron precipitation. Substantial amounts of soluble and colloidal Fe-humate complexes in groundwater may arouse aesthetic and safety concerns in groundwater use. In contrast, the coexistence of humic acid and Ca2+/Mg2+ significantly promoted aggregation of humic acid and metal hydrolyzed species, as indicated by XPS and TEM analyses, which remained nondissolved (>0.45 microm) in solution. These metal-humate aggregates may impose long-term impacts on PRBs in subsurface settings.  相似文献   

9.
10.
This study investigated Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions similar to those present at the Hanford site. Compared to acidic and neutral pH, chromium(VI) reduction by magnetite at high pH conditions is limited (<20% of potential reduction capacity), and the extent of reduction does not vary significantly with increasing NaOH concentration. This is due to the formation of maghemite, goethite, and/or Fe1-xCrxOOH, which may form a passivation layer on the magnetite surface, stopping further chromate reduction. Maghemite is formed in lower NaOH concentrations. The extent of goethite formation increases with NaOH concentration. Goethite may be formed through two mechanisms: (i) dissolution of magnetite leads to the precipitation of goethite and/or (ii) dissolution of newly formed maghemite intermediate, followed by precipitation of goethite. Extended X-ray absorption fine structure spectroscopy shows that Cr has a similar structural environment at alkaline pH as at acidic and circumneutral conditions.  相似文献   

11.
Chromium isotopes are potentially useful indicators of Cr(VI) reduction reactions in groundwater flow systems; however, the influence of transport on Cr isotope fractionation has not been fully examined. Laboratory batch and column experiments were conducted to evaluate isotopic fractionation of Cr during Cr(VI) reduction under both static and controlled flow conditions. Organic carbon was used to reduce Cr(VI) in simulated groundwater containing 20 mg L(-1) Cr(VI) in both batch and column experiments. Isotope measurements were performed on dissolved Cr on samples from the batch experiments, and on effluent and profile samples from the column experiment. Analysis of the residual solid-phase materials by scanning electron microscopy (SEM) and by X-ray absorption near edge structure (XANES) spectroscopy confirmed association of Cr(III) with organic carbon in the column solids. Decreases in dissolved Cr(VI) concentrations were coupled with increases in δ(53)Cr, indicating that Cr isotope enrichment occurred during reduction of Cr(VI). The δ(53)Cr data from the column experiment was fit by linear regression yielding a fractionation factor (α) of 0.9979, whereas the batch experiments exhibited Rayleigh-type isotope fractionation (α = 0.9965). The linear characteristic of the column δ(53)Cr data may reflect the contribution of transport on Cr isotope fractionation.  相似文献   

12.
Conditional distribution coefficients (K(DOM')) for Hg(II) binding to seven dissolved organic matter (DOM) isolates were measured at environmentally relevant ratios of Hg(II) to DOM. The results show that K(DOM') values for different types of samples (humic acids, fulvic acids, hydrophobic acids) isolated from diverse aquatic environments were all within 1 order of magnitude (10(22.5 +/-1.0)-10(23.5 +/- 1.0)) L kg(-1)), suggesting similar Hg(ll) binding environments, presumably involving thiol groups, for the different isolates. K(DOM') values decreased at low pHs (4) compared to values at pH 7, indicating proton competition for the strong Hg(II) binding sites. Chemical modeling of Hg(II)-DOM binding at different pH values was consistent with bidentate binding of Hg(II) by one thiol group (pK(a) = 10.3) and one other group (pK(a) = 6.3) in the DOM, which is in agreement with recent results on the structure of Hg(II)-DOM bonds obtained by extended X-ray absorption fine structure spectroscopy (EXAFS).  相似文献   

13.
Chromium (Cr) is a well-established carcinogen that is a contaminant at half of the EPA Superfund sites in the United States. Two separate studies were performed to investigate the possibility that mesquite (Prosopis spp.), which is an indigenous desert plant species, can remove Cr from the environment via active transport systems to the aerial portions of the plant. The first study was performed by growing mesquite on solid media (agar) at Cr(VI) concentrations of 75 and 125 ppm. The accumulation found in the leaves under the present conditions indicated that mesquite could be classified as a hyperaccumulator of chromium. The second study was conducted to investigate the differences between the type of Cr ligand involved in Cr uptake with agar and hydroponic cultures. We used X-ray absorption spectroscopy (XAS) to determine the mechanisms involved in the uptake and binding of Cr(VI) in live mesquite tissue. The XAS results for this study showed that some of the supplied Cr(VI) was uptaken by the mesquite roots; however, the data analyses of the plant tissues demonstrated that it was fully reduced to Cr(III) in the leaf tissues. Experiments are currently being performed to evaluate the behavior of the Mesquite plant using lower Cr concentrations.  相似文献   

14.
To understand the key processes affecting 99Tc mobility in the subsurface and help with the remediation of contaminated sites, the binding constants of several humic substances (humic and fulvic acids) with Tc(IV) were determined, using a solvent extraction technique. The novelty of this paper lies in the determination of the binding constants of the complexes formed with the individual species TcO(OH)+ and TcO(OH)2(0). Binding constants were found to be 6.8 and between 3.9 and 4.3, for logβ1,-1,1 and logβ1,-2,1, respectively; these values were little modified by a change of ionic strength, in most cases, between 0.1 and 1.0 M, nor were they by the nature and origin of the humic substances. Modeling calculations based on these show TcO(OH)-HA to be the predominant complex in a system containing 20 ppm HA and in the 4-6 pH range, whereas TcO(OH)2(0) and TcO(OH)2-HA are the major species, in the pH 6-8 range.  相似文献   

15.
聚乙烯醇(PVA)是印染废水有机污染物的主要来源,同时含铬显影剂的使用导致部分印染废水含有六价铬(Cr(Ⅵ)),高浓度PVA及高毒性Cr(Ⅵ)的协同处理技术亟待突破。利用过硫酸盐热活化可引发聚合物发生自由基交联反应的特点,研究印染废水中PVA及Cr(Ⅵ)协同处理的方法。考察了过硫酸盐投加量、反应温度、初始pH值、Cr(Ⅵ)初始浓度等因素对二者去除效率的影响,借助X射线光电子能谱、凝胶渗透色谱等手段分析了反应沉淀物及剩余废水中残留物,探索了PVA及Cr(Ⅵ)的协同处理机制。结果表明:当过硫酸盐质量浓度为8.0 g/L、反应温度为70℃、废水pH值小于6时,模拟印染废水的化学需氧量去除率达91.9%,PVA去除率可达98.0%,Cr(Ⅵ)还原率为94.3%;过硫酸盐热活化引发PVA自由基交联及PVA的还原性是PVA高效沉淀及Cr(Ⅵ)有效还原的主要原因,此类浆料与重金属污染物的协同处理在印染废水方面具有一定的应用前景。  相似文献   

16.
Interactions of glyphosate (N-phosphonomethylglycine) herbicide (GLY) with soluble fulvic acids (FAs) and humic acids (HAs) at pH 5.2 and 7 were studied by (1)H and (31)P NMR spectroscopy. Increasing concentrations of soluble humic matter determined broadening and chemical shift drifts of proton and phosphorus GLY signals, thereby indicating the occurrence of weak interactions between GLY and humic superstructures. Binding was larger for FAs and pH 5.2 than for HAs and pH 7, thus suggesting formation of hydrogen bonds between GLY carboxyl and phosphonate groups and protonated oxygen functions in humic matter. Changes in relaxation and correlation times of (1)H and (31)P signals and saturation transfer difference NMR experiments confirmed the noncovalent nature of GLY-humic interactions. Diffusion-ordered NMR spectra allowed calculation of the glyphosate fraction bound to humic superstructures and association constants (K(a)) and Gibbs free energies of transfer for GLY-humic complex formation at both pH values. These values showed that noncovalent interactions occurred most effectively with FAs and at pH 5.2. Our findings indicated that glyphosate may spontaneously and significantly bind to soluble humic matter by noncovalent interactions at slightly acidic pH and, thus, potentially pollute natural water bodies by moving through soil profiles in complexes with dissolved humus.  相似文献   

17.
At Idaho National Laboratory, Cr(VI) concentrations in a groundwater plume once exceeded regulatory limits in some monitoring wells but have generally decreased over time. This study used Cr stable isotope measurements to determine if part of this decrease resulted from removal of Cr(VI) via reduction to insoluble Cr(III). Although waters in the study area contain dissolved oxygen, the basalt host rock contains abundant Fe(II) and may contain reducing microenvironments or aerobic microbes that reduce Cr(VI). In some contaminated locations, (53)Cr/(52)Cr ratios are close to that of the contaminant source, indicating a lack of Cr(VI) reduction. In other locations, ratios are elevated. Part of this shift may be caused by mixing with natural background Cr(VI), which is present at low concentrations but in some locations has elevated (53)Cr/(52)Cr. Some contaminated wells have (53)Cr/(52)Cr ratios greater than the maximum attainable by mixing between the inferred contaminant and the range of natural background observed in several uncontaminated wells, suggesting that Cr(VI) reduction has occurred. Definitive proof of reduction would require additional evidence. Depth profiles of (53)Cr/(52)Cr suggest that reduction occurs immediately below the water table, where basalts are likely least weathered and most reactive, and is weak or nonexistent at greater depth.  相似文献   

18.
Photoreduction of Cr(VI) involving Fe is strongly affected by the presence of organic or inorganic compounds in an acidic environment. In this study, we have found a new pathway of Cr(VI) photoreduction in the presence of Fe-(III) that is influenced by two inorganic electrolytes (i.e., NO3- and Cl-) and the pH. In NO3- and Cl- systems without Fe(III), Cr(VI) photoreduction could occur and was independent of the Cr(VI) concentration. The zero-order rate constant of the photoreduction reaction increased when the solution pH was decreased from 2 to 1; the reaction rate was higher in the NO3- system than in the Cl- system. The higher reaction rate in the NO3- system was attributed to the photolysis of NO3-, which resulted in the formation of NO2- for reduction of Cr(VI). Conversely, the effect of Fe-(III) addition on the increase in Cr(VI) photoreduction rate in the Cl- system was more significant than that in the NO3- system. The addition of Fe(III) to the Cl- system caused the formation of [Fe(OH2)5Cl]2+, the photolysis of which subsequently resulted in the formation of Fe(II) for reduction of the Cr(VI). This study suggests that the photolysis of NO3- and Fe-Cl complex may contribute significantly to Cr(VI) reduction in surface water that receives electroplating wastewater containing high levels of NO3-, Cl-, and Fe-(III). Therefore, under the acidic conditions that are favorable for Fe-Cl complex formation or in the presence of NO3-, the effects of inorganic components on Cr(VI) photoreduction cannot be ignored for the precise evaluation of the transformation of Cr in the environment.  相似文献   

19.
This paper introduced a simple method of treating Cr(Vl)-bearing toxic wastewaters using a natural mineral: clino-pyrrhotite. Laboratory bench-scale mixing experiments were carried out in both Cr(VI)-bearing artificial solutions and industrial wastewaters under controlled conditions. The effects of solution pH, Cr(VI) concentration, mineral grain size, mineral/solution ratio, and reaction time on the Cr(VI) removal were studied. Chromium was effectively removed from the solutions and wastewaters. After the treatment, the liquid was clean enough to be discharged directly into the natural environment. The Cr(VI) removal process involved sequentially the adsorption of Cr(VI), in the form of Cr2O7(2-) or CrO4(2-), onto the mineral surface, the reduction of the adsorbed Cr(VI) to Cr(lll), catalyzed at the vacant Fe sites of the mineral, and finally the precipitation of Cr(lll) as Cr2S3, Cr2O3, and Cr(OH)3 solid phases. Conditions such as a fine mineral grain size, an excessive quantity of clino-pyrrhotite and a weak acidic media, favored the removal process. For clino-pyrrhotite with a restricted grain size, the minimum required quantity of the mineral was proportional to the total quantity of Cr(VI) to be removed. Quantitatively, one cubic meter of industrial wastewater that contained approximately 1 mmol dm(-3) of Cr(VI) and had a pH value between 1 and 10 would be effectively treated after it was in contact with 220 kg of 145 +/- 28 microm clino-pyrrhotite for an hour. Furthermore, the quantity of the final solid waste byproduct was small, and the solid residue of clino-pyrrhotite could be reused after a simple rinse with water. Compared to the previous Cr(VI)-bearing wastewater treatment schemes, this method was simple, effective, economical, and environmentally sound. It has great potential for use in industrial-scale applications.  相似文献   

20.
The viability of utilizing Reclaimed Limestone Residual RLR (Modified Steel Slag) to remove hexavalent chromium Cr(VI) from the aqueous phase was investigated. A physical characterization of RLR showed that it is composed of various minerals some of which can reduce and others adsorb Cr(VI). Preliminary results showed that RLR significantly reduced the concentration of Cr(VI) from the aqueous phase. Adsorption competition tests with orthophosphate (HP04(2-)) and sulfate (SO4(2-)) showed that Cr(VI) was still effectively reduced from solution regardless of the competing anions present. Kinetic tests based on the relationship d[Cr(VI)]/dt = kCr[RLR]alpha[Cr(VI)]beta showed that under initially neutral to basic conditions kCr = 3.45+/-(0.25) x 10(-4) mg0.4 L(-0.4) h(-1), alpha = 0.9, and beta = -0.3, while under initially acidic conditions kCr = 5.65+/-(1.055) x 10(-1) mg(-0.4) L0.4 h(-1), alpha = 2.2, and beta = -0.8. Stirred batch tests with RLR in deionized water showed significant drops in the redox potential (Eh), and in the presence of oxygen Eh values dropped to between 50 and 100 mV while in the absence of oxygen Eh values as low as -200 mV were observed. These results lead to the conclusion that redox mechanisms were responsible for the reduction of hexavalent chromium by RLR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号