首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although potassium permanganate (KMnO4) flushing is commonly used to destroy chlorinated solvents in groundwater, many of the problems associated with this treatment scheme have not been examined in detail. We conducted a KMnO4 flushing experiment in a large sand-filled flow tank (L x W x D = 180 cm x 60 cm x 90 cm) to remove TCE emplaced as a DNAPL in a source zone. The study was specifically designed to investigate cleanup progress and problems of pore plugging associated with the dynamics of the solid-phase reaction front (i.e., MnO2) using chemical and optical monitoring techniques. Ambient flow through the source zone formed a plume of dissolved TCE across the flow tank. The volume and concentration of TCE plume diminished with time because of the in situ oxidation of the DNAPL source. The migration velocity of the MnO2 reaction front decreased with time, suggesting that the kinetics of the DNAPL oxidation process became diffusion-controlled because of the pore plugging. A mass balance calculation indicated that only approximately 18% of the total applied KMnO4 (MnO4- = 1250 mg/ L) participated in the oxidation reaction to destroy approximately 41% of emplaced TCE. Evidently, the efficiency of KMnO4 flushing scheme diminished with time due to pore plugging by MnO2 and likely CO2, particularly in the TCE source zone. In addition, the excess KMnO4 used for flushing may cause secondary aquifer contamination. One needs to be concerned about the efficacy of KMnO4 flushing in the field applications. Development of a new approach that can provide both contaminant destruction and plugging/ MnO4- control is required.  相似文献   

2.
Oxidative treatment of trichloroethylene (TCE) in the form of dense nonaqueous-phase liquid (DNAPL) by potassium permanganate (KMnO4) was investigated in a series of batch tests. The study focused on understanding the fundamental mechanisms of oxidative removal of DNAPL TCE by permanganate oxidation. Dissolution experiment for DNAPL TCE has been performed as a control experiment in the absence of KMnO4. DNAPL TCE dissolved into the aqueous phase until it reached the saturation concentration of 1200 mg/L (9.16 x 10(-3) M) at 20 degrees C. The rate of dissolution of DNAPL TCE was proportional to the volume of the DNAPL. In the presence of KMnO4, the experimental results showed that the amount of TCE oxidized during the reaction was increased continuously as [MnO4-] decreased even though the rate decreased as [MnO4-] decreased. It was apparent that more DNAPL TCE was removed with a faster rate for higher initial permanganate concentration. At high permanganate concentration, the aqueous concentration of TCE was kept low and practically constant by the chemical reaction between aqueous TCE and MnO4-. However, as MnO4- was consumed in the system, the aqueous concentration started to increase until it reached solubility. From experimental observation, 1.56-1.78 mol of MnO4- was consumed per mole of TCE oxidized. Furthermore, 2.85-2.98 mol of Cl- was released to the solution per mole of TCE oxidized. Since the complete mineralization of TCE requires 2.0 mol of MnO4- and releases 3 mol of Cl- per mol of TCE oxidized, the observed stoichiometric factors indicated incomplete mineralization of TCE, but nearly complete dechlorination. Enhancement factor due to chemical reaction was quantified experimentally. The enhancement factor was shown to be a function of the molar ratio of MnO4- to TCE in the system, and hence varied during the reaction period.  相似文献   

3.
Permanganate injection is increasingly applied for in situ destruction of chlorinated ethenes in groundwater. This laboratory and field study demonstrates the roles that carbon isotope analysis can play in the assessment of oxidation of trichloroethene (TCE) by permanganate. In laboratory experiments a strong carbon isotope fractionation was observed during oxidation of TCE with similar isotopic enrichment factors (-25.1 to -26.8 per thousand) for initial KMnO4 concentrations between 67 and 1,250 mg/L. At the field site, a single permanganate injection episode was conducted in a sandy aquifer contaminated with TCE as dense nonaqueous liquid (DNAPL). After injection, enriched delta13C values of up to +204% and elevated Cl- concentrations were observed at distances of up to 4 m from the injection point. Farther away, the Cl- increased without any change in delta13C of TCE suggesting that Cl- was not produced locally but migrated to the sampling point Except for the closest sampling location to the injection point, the delta13C rebounded to the initial 613C again, likely due to dissolution of DNAPL Isotope mass balance calculations made it possible to identify zones where TCE oxidation continued to occur during the rebound phase. The study indicates that delta13C values can be used to assess the dynamics between TCE oxidation and dissolution and to locate zones of oxidation of chlorinated ethenes that cannot be identified from the Cl- distribution alone.  相似文献   

4.
Evidence of seepage from animal waste holding lagoons at a dairy facility in the San Joaquin Valley of California is assessed in the context of a process geochemical model that addresses reactions associated with the formation of the lagoon water as well as reactions occurring upon the mixture of lagoon water with underlying aquifer material. Comparison of model results with observed concentrations of NH4+, K+, PO4(3-), dissolved inorganic carbon, pH, Ca2+, Mg2+, SO4(2-), Cl-, and dissolved Ar in lagoon water samples and groundwater samples suggests three key geochemical processes: (i) off-gassing of significant quantities of CO2 and CH4 during mineralization of manure in the lagoon water, (ii) ion exchange reactions that remove K+ and NH4+ from seepage water as it migrates into the underlying anaerobic aquifer material, and (iii) mineral precipitation reactions involving phosphate and carbonate minerals in the lagoon water in response to an increase in pH as well as in the underlying aquifer from elevated Ca2+ and Mg2+ levels generated by ion exchange. Substantial off-gassing from the lagoons is further indicated by dissolved argon concentrations in lagoon water samples that are below atmospheric equilibrium. As such, Ar may serve as a unique tracer for lagoon water seepage since under-saturated Ar concentrations in groundwater are unlikely to be influenced by any processes other than mechanical mixing.  相似文献   

5.
The increased risk of periparturient hypocalcaemia through offering high-K feeds in the precalving period has been reported previously. Two experiments (experiment 1 and 2) investigated the effect of KCl fertilizer on pasture mineral concentration, the dietary cation-anion difference (DCAD), and the subsequent effect of this on periparturient plasma and urine mineral status. Experiment 2 examined the effect of precalving Mg source (MgO, MgSO4, and MgCl2) and postcalving Ca supplementation on the concentration of Ca and Mg in plasma and urine. Unexpectedly, pasture DCAD increased (P = 0.06) from 434 to 535 mEq/kg DM in experiment 1 as pasture K concentration decreased from 4.2 to 3.5%, primarily because of a corresponding and greater decrease in pasture Cl concentration (from 1.9 to 1.3%). Plasma Ca or Mg concentrations were not affected by pasture K concentration. A linear decline (P < 0.10) in urine Mg suggested a decline in Mg absorption as pasture K increased. In experiment 2, pasture DCAD decreased (P < 0.05) linearly from 403 to 350 mEq/kg DM as pasture K concentration decreased from 3.8 to 3.3%. However, precalving urine pH was not affected by the declining DCAD. Postcalving plasma Ca concentration was affected by precalving Mg source with MgSO4 > MgCl2 > MgO. Differences in acid-base balance do not explain the difference between Mg salts. These results indicate that precalving dietary S and Cl concentration plays an important role in Ca homeostasis, in addition to its role in acid-base balance. Supplementation with Ca postcalving increased plasma Ca concentration for 2 d postcalving. Milk production was not affected.  相似文献   

6.
Eighty multiparous Holstein cows were assigned to eight treatments in a 2 x 2 x 2 factorial design to examine changes in serum parathyroid hormone, calcitonin, Ca, P, Mg, K, and Cl under two levels of dietary Ca and P with two anion-cation balances. Factor levels were low and high Ca (51 vs. 115 g/d), P (38 vs. 52 g/d), and cationic:anionic balance (23 vs. -8 meq). Cows were offered a TMR and an experimental mineral supplement to adjust mineral and anion-cation levels. Caudal vein blood samples were collected every 2 d from d -10 to +10 from calving. Serum K was lower for low Ca and high P compared with high Ca and low P treatments. Neither hormones nor the minerals examined in serum showed treatment effects. Cows of higher parity consumed less supplement and had lower serum Ca and P. All serum variables except calcitonin showed day to day variations. Both Ca and P decreased around parturition, whereas parathyroid hormone and Mg increased. Anionic diets did not differ from cationic diets regarding serum parathyroid hormone, calcitonin, Ca, P, Mg, K, Cl, or Na.  相似文献   

7.
In the vicinity of dense nonaqueous phase liquid (DNAPL) contaminant source zones, aqueous concentrations of tetrachloroethene (PCE) in groundwater may approach saturation levels. In this study, the ability of two PCE-respiring strains (Desulfuromonas michiganensis and Desulfitobacterium strain PCE1) to dechlorinate high concentrations of PCE was experimentally evaluated and depended on the initial biomass concentration. This suggests high PCE concentrations permanently inactivated a fraction of biomass, which, if sufficiently large, prevented dechlorination from proceeding. The toxic effects of PCE were incorporated into a model of dehalorespirer growth by adapting the transformation capacity concept previously applied to describe biomass inactivation by products of cometabolic TCE oxidation. The inactivation growth model was coupled to the Andrews substrate utilization model, which accounts for the self-inhibitory effects of PCE on dechlorination rates, and fit to the experimental data. The importance of incorporating biomass inactivation and self-inhibition effects when modeling reductive dechlorination of high PCE concentrations was demonstrated by comparing the goodness-of-fit of the Andrews biomass inactivation and three alternate models that do capture these factors. The new dehalorespiration model should improve our ability to predict contaminant removal in DNAPL source zones and determine the inoculum size needed to successfully implement bioaugmentation of DNAPL source zones.  相似文献   

8.
A bench-scale study was performed to evaluate the enhancement of tetrachloroethene (PCE) dissolution from a dense nonaqueous phase liquid (DNAPL) source zone due to reductive dechlorination. The study was conducted in a pair of two-dimensional bench-scale aquifer systems using soil and groundwater from Dover Air Force Base, DE. After establishment of PCE source zones in each aquifer system, one was biostimulated (addition of electron donor) while the other was biostimulated and then bioaugmented with the KB1 dechlorinating culture. Biostimulation resulted in the growth of iron-reducing bacteria (Geobacter) in both systems as a result of the high iron content of the Dover soil. After prolonged electron donor addition methanogenesis dominated, but no dechlorination was observed. Following bioaugmentation of one system, dechlorination to ethene was achieved, coincident with growth of introduced Dehalococcoides and other microbes in the vicinity and downgradient of the PCE DNAPL (detected using DGGE and qPCR). Dechlorination was not detected in the nonbioaugmented system over the course of the study, indicating that the native microbial community, although containing a member of the Dehalococcoides group, was not able to dechlorinate PCE. Over 890 days, 65% of the initial emplaced PCE was removed in the bioaugmented, dechlorinating system, in comparison to 39% removal by dissolution from the nondechlorinating system. The maximum total ethenes concentration (3 mM) in the bioaugmented system occurred approximately 100 days after bioaugmentation, indicating that there was at least a 3-fold enhancement of PCE dissolution atthis time. Removal rates decreased substantially beyond this time, particularly during the last 200 days of the study, when the maximum concentrations of total ethenes were only about 0.5 mM. However, PCE removal rates in the dechlorinating system remained more than twice the removal rates of the nondechlorinating system. The reductions in removal rates over time are attributed to both a shrinking DNAPL source area, and reduced flow through the DNAPL source area due to bioclogging and pore blockage from methane gas generation.  相似文献   

9.
In batch culture experiments we examined oxidation of As(III) and adsorption of As(III/V) by biogenic manganese oxide formed by a manganese oxide-depositing fungus, strain KR21-2. We expected to gain insight into the applicability of Mn-depositing microorganisms for biological treatment of As-contaminated waters. In cultures containing Mn2+ and As(V), the solid Mn phase was rich in bound Mn2+ (molar ratio, approximately 30%) and showed a transiently high accumulation of As(V) during the early stage of manganese oxide formation. As manganese oxide formation progressed, a large proportion of adsorbed As(V) was subsequently released. The high proportion of bound Mn2+ may suppress a charge repulsion between As(V) and the manganese oxide surface, which has structural negative charges, promoting complex formation. In cultures containing Mn2+ and As(III), As(III) started to be oxidized to As(V) after manganese oxide formation was mostly completed. In suspensions of the biogenic manganese oxides with dissolved Mn2+, As(III) oxidation rates decreased with increasing dissolved Mn2+. These results indicate that biogenic manganese oxide with a high proportion of bound Mn2+ oxidizes As(III) less effectively than with a low proportion of bound Mn2+. Coexisting Zn2+, Ni2+, and Co2+ also showed similar effects to different extents. The present study demonstrates characteristic features of oxidation and adsorption of As by biogenic manganese oxides and suggests possibilities of developing a microbial treatment system for water contaminated with As that is suited to the actual situation of contamination.  相似文献   

10.
Dense nonaqueous phase liquid (DNAPL) contamination is a major environmental problem. Cosolvent flooding is proposed as a remedial alternative to water flooding. The efficacy of cosolvent flooding is a function of the degree of contact between the injected remedial fluid and the resident DNAPL Poor contact may result from remedial fluids traveling in preferential flow paths which bypass trapped DNAPL Thus, the motivation for this study was to use the preferential flow of air in porous media to enhance contact between the injected cosolvent and resident DNAPL The study evaluated concurrent injection of cosolvent and air to improve the spatial extent of DNAPL removal in porous media. A 70% ethanol/30% water (v/v) cosolvent was injected simultaneously with air into a micromodel containing residual tetrachloroethylene (PCE). Double drainage displacement was observed as a dominant DNAPL removal mechanism in the initial period of the cosolvent-air flooding (i.e., gas displaced PCE that displaced water). The residual PCE residing in the preferential paths traversed by air was readily displaced. In addition to this initial PCE mobilization, air flowing through the preferential flow paths displaced cosolvent from these paths into other flow paths and facilitated dissolution of PCE.  相似文献   

11.
A pilot-scale demonstration of surfactant-enhanced aquifer remediation (SEAR) was conducted to recover dense nonaqueous phase liquid (DNAPL) tetrachloroethene (PCE) from a sandy glacial outwash aquifer underlying a former dry cleaning facility at the Bachman Road site in Oscoda, MI. Part one of this two-part paper describes site characterization efforts and a comprehensive approach to SEAR test design, effectively integrating laboratory and modeling studies. Aquifer coring and drive point sampling suggested the presence of PCE-DNAPL in a zone beneath an occupied building. A narrow PCE plume emanating from the vicinity of this building discharges into Lake Huron. The shallow unconfined aquifer, characterized by relatively homogeneous fine-medium sand deposits, an underlying clay layer, and the absence of significant PCE transformation products, was judged suitable for the demonstration of SEAR. Tween 80 was selected for application based upon its favorable solubilization performance in batch and two-dimensional sand tank treatability studies, biodegradation potential, and regulatory acceptance. Three-dimensional flow and transport models were employed to develop a robust design for surfactant delivery and recovery. Physical and fiscal constraints led to an unusual hydraulic design, in which surfactant was flushed across the regional groundwater gradient, facilitating the delivery of concentrations of Tween 80 exceeding 1% (wt) throughout the treatment zone. The potential influence of small-scale heterogeneity on PCE-DNAPL distribution and SEAR performance was assessed through numerical simulations incorporating geostatistical permeability fields based upon available core data. For the examined conditions simulated PCE recoveries ranged from 94to 99%. The effluent treatment system design consisted of low-profile air strippers coupled with carbon adsorption to trap off-gas PCE and discharge of treated aqueous effluent to a local wastewater treatment plant. The systematic and comprehensive design methodology described herein may serve as a template for application at other DNAPL sites.  相似文献   

12.
Oxidative transformation of triclosan and chlorophene by manganese oxides   总被引:6,自引:0,他引:6  
The antibacterial agents triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) and chlorophene (4-chloro-2-(phenylmethyl)phenol) show similar susceptibility to rapid oxidation by manganese oxides (delta-MnO2 and MnOOH) yielding Mn(II) ions. Both the initial reaction rate and adsorption of triclosan to oxide surfaces increase as pH decreases. The reactions are first-order with respect to the antibacterial agent and MnO2. The apparent reaction orders to H+ were determined to be 0.46 +/- 0.03 and 0.50 +/- 0.03 for triclosan and chlorophene, respectively. Dissolved metal ions (Mn(II), Zn(II), and Ca(II)) and natural organic matter decrease the reaction rate by competitively adsorbing and reacting with MnO2. Product identification indicates that triclosan and chlorophene oxidation occurs at their phenol moieties and yields primarily coupling and p-(hydro)quinone products. A trace amount of 2,4-dichlorophenol is also produced in triclosan oxidation, suggesting bond-breaking of the ether linkage. The experimental results support the mechanism that after formation of a surface precursor complex of the antibacterial agent and the surface-bound Mn(IV), triclosan and chlorophene are oxidized to phenoxy radicals followed by radical coupling and further oxidation to form the end products. Compared to several structurally related substituted phenols (i.e., 2-methyl-4-chlorophenol, 2,4-dichlorophenol, 3-chlorophenol, and phenol), triclosan and chlorophene exhibit comparable or higher reactivities toward oxidation by manganese oxides. The higher reactivities are likely affected by factors including electronic and steric effects of substituents and compound hydrophobicity. Once released into the environment, partitioning of triclosan and chlorophene to soils and sediments is expected because of their relatively hydrophobic nature. Results of this study indicate that manganese oxides in soils will facilitate transformation of these antibacterial agents.  相似文献   

13.
A pilot-scale demonstration of surfactant-enhanced aquifer remediation (SEAR) was conducted in July 2000 at the Bachman Road site located in Oscoda, MI. The Bachman aquifer is a shallow, relatively homogeneous, unconfined aquifer formation composed primarily of sandy glacial outwash with relatively low organic carbon content (0.02 wt %). A 6 wt % aqueous solution of Tween 80 (a nonionic, food-grade surfactant) was flushed through a localized dense nonaqueous phase liquid (DNAPL) source zone to recover approximately 19 L of tetrachloroethene (PCE). Post-treatment monitoring revealed PCE concentrations were reduced by up to 2 orders of magnitude within the source zone, and there was no evidence of concentration rebound after more than 450 d. Concentrations of PCE dechlorination products (trichloroethene, cis-1,2-dichloroethene) 450 d after SEAR operations ceased were more than 2 orders of magnitude greater than pretreatment values, suggesting stimulation of native dechlorination activity. Post-treatment monitoring detected increased concentrations of volatile fatty acids generated from the fermentation of residual-level Tween 80 surfactant. These field data suggest that Tween 80 not only induced and maintained anaerobiosis but also provided reducing equivalents to reductively dechlorinating populations present in the oligotrophic Bachman aquifer. Experience from this site supports application of staged treatment strategies that couple SEAR and microbial reductive dechlorination to enhance mass removal and reduce contaminant mass flux emanating from treated source zones.  相似文献   

14.
The interfacial tension (IFT) that arises at the interface between water and an immiscible organic liquid is a key parameter affecting the transport and subsequent fate of the organic liquid in water-saturated porous media. In this paper, data are presented that show how contact between a range of soil types and chlorinated hydrocarbon solvent (CHS) dense nonaqueous phase liquids (DNAPLs) can affect DNAPL/water IFT values. The soils examined are indicative of U.K. soil types and shallow aquifer materials. The solvents investigated were tetrachloroethylene (PCE) and trichloroethylene (TCE). Lab grade, recovered field DNAPL and industrial waste chlorinated solvent mixtures were used. The data from batch and column experiments invariably revealed that water/DNAPL IFT values change following contact with unsaturated soils. In the majority of cases, the IFT values increase following soil exposure. However, after contact with an organic-rich soil, the IFT of the lab grade solvents decreased. The experimental evidence suggests that these reductions are linked to the removal of organic material from the soil and its subsequent incorporation into the solvent IFT increases in the case of lab solvents are shown to be linked to the removal of stabilizers (added by the manufacturers to obviate degradation) that are removed by adsorption to soil mineral surfaces. Similarly, it is conjectured that adsorption of surface-active compounds from the industrial waste samples to soil surfaces is responsible for increases in the IFT in these samples. Finally, it was observed that invading CHSs are capable of dissolving and subsequently mobilizing in-situ soil contaminants. GC/MS analysis revealed these mobilized soil contaminants to be polyaromatic hydrocarbons and phthalate esters.  相似文献   

15.
Declines in Ca and Mg in low ANC lakes recovering from acidic deposition are widespread across the northern hemisphere. We report overall increases between 1984 and 2004 in the concentrations of Ca + Mg and Cl in lakes representing the statistical population of nearly 4000 low ANC lakes in the northeast U.S. Increases in Cl occurred in nearly all lakes in urbanized southern New England, but only 18% of lakes in more remote Maine had Cl increases. This spatial pattern implicates road salt application as the major source of the increased Cl salts. Among the 48% of the lake population classified as salt-affected, the median changes in Cl (+133 microeq/L) and Ca + Mg (+47 microeq/ L) were large and positive in direction over the 20 years. However, in the unaffected lakes, Cl remained stable and Ca + Mg decreased (-3 microeq/L), consistent with reported long-term trends in base cations of acid-sensitive lakes. This discrepancy between the Cl groups suggests that changes in ion exchange processes in salt-affected watersheds have altered the geochemical cycling of Ca and Mg. One policy-relevant implication is that waters influenced by Cl salts complicate regional assessments of surface water recovery from "acid rain" related to the passage of the Clean Air Act.  相似文献   

16.
For the simultaneous analysis of the cations Li, Na, K, Ca, and Mg as well as Mn and the anions hydrogen carbonate, chloride, sulfate and nitrate, silica gel- and polymer-based ion exchange materials with conductivity and spectrophotometric detection combined with a post-column derivatization system (PAR-Zn-EDTA for Ca, Mg, Mn) and also an ion-pair system with RP-18 phase were compared with a view to their application to mineral water samples. It is possible to determine Li, Na, and K in such samples with or without the suppressor technique using polymer columns. A polybutadiene maleic acid silica gel cation exchanger material makes feasible simultaneous analysis of alkaline and earth alkaline metals. Ca, Mg, and hydrogen carbonate, chloride, sulfate and nitrate are analyzed in less than 16 min using a silica gel anion exchanger with EDTA as the eluent. To stay within the linear range of the calibration function it is necessary to perform two injections in different dilutions (between 1:4 and 1:500) due to the different concentration ratios. For the analysis of manganese above 100 micrograms/L a system with the cation exchanger Partisil SCX and the eluent ethylenediamine/oxalate with post-column derivatization is used. The sample pretreatment is done by reduction with thiosulfate. A total of 15 different mineral waters were analyzed with all the systems and the results were compared with those of reference methods (AAS, potentiometry), showing good conformity.  相似文献   

17.
Although in situ remediation technologies have been used to aggressively treat dense nonaqueous phase liquid (DNAPL) source zones, complete contaminant removal or destruction is rarely achieved. To evaluate the effects of partial source zone mass removal on dissolved-phase contaminant flux, four experiments were conducted in a two-dimensional aquifer cell that contained a tetrachloroethene (PCE) source zone and down-gradient plume region. Initial source zone PCE saturation distributions, quantified using a light transmission system, were expressed in terms of a ganglia-to-pool ratio (GTP), which ranged from 0.16 (13.8% ganglia) to 1.6 (61.5% ganglia). The cells were flushed sequentially with a 4% (wt.) Tween 80 surfactant solution to achieve incremental PCE mass removal, followed by water flooding until steady-state mass discharge and plume concentrations were established. In all cases, the GTP ratio decreased with increasing mass removal, consistent with the observed preferential dissolution of PCE ganglia and persistence of high-saturation pools. In the ganglia-dominated system (GTP = 1.6), greater than 70% mass removal was required before measurable reductions in plume concentrations and mass discharge were observed. For pool-dominated source zones (GTP < 0.3), substantial reductions (>50%) in mass discharge were realized after only 50% mass removal.  相似文献   

18.
四川会理烟区烤烟矿质元素含量与评吸结果的关系分析   总被引:5,自引:0,他引:5  
对四川会理烟区烤烟中的11种矿质元素(氮、磷、钾、钙、镁、铁、锰、硼、锌、铜、氯)含量及其与香气质、香气量和评吸总分的关系进行了分析。结果表明: (1)会理烟区烟叶中磷、钙、硼、铁、锰、锌、氯的含量在较适宜的范围内,但烟叶中氮、钾含量较低,镁、铜含量缺乏;(2)偏相关分析表明,香气量得分与氯的含量显著负相关,评吸总分分别与氯和钾的含量显著负相关和正相关,但香气质得分与分析的11种矿质元素关系不显著;(3)通径分析表明,镁和钾的含量对烟叶香气质得分、香气量得分和评吸总分有较大的正面影响,铁和氯的含量对烟叶香气质得分、香气量得分和评吸总分有较大的负面影响。   相似文献   

19.
Tetrachloroethene (PCE) dense nonaqueous-phase liquid (DNAPL) can act as a persistent groundwater contamination source for decades. Biologically enhanced dissolution of pure PCE DNAPL has potential for reducing DNAPL longevity as indicated previously (Environ. Sci. Technol. 2000, 34, 2979). Reported here are expanded studies to evaluate donor substrates that offer different remediation strategies for bioenhanced DNAPL dissolution, including pentanol (soluble substrate, fed continuously), calcium oleate (insoluble substrate, placed in column initially by alternate pumping of sodium oleate and calcium chloride), and olive oil (mixed with PCE and placed in column initially). Compared with a no-substrate column control, the DNAPL dissolution rate was enhanced about three times when directly coupled with biological transformation. The major degradation product formed was cDCE, but significant amounts of VC and ethene were also found with some columns. Extensive methanogenesis, which reduced PCE transformation, occurred in both the pentanol-fed and oleate-amended columns, but not in the olive-oil-amended column, suggesting that methanogens managed to colonize column niches where PCE DNAPL was not present. Detrimental methane production in the pentanol-fed column was nearly eliminated by presaturating the feed solution with PCE. These results suggest potential DNAPL remediation strategies to enhance dehalogenation while controlling competitive methanogenic utilization of donor substrates.  相似文献   

20.
TWO SOURCES of magnesium fertilizer, Epsom salt and dolomite, were compared as to their effect on nitrogen, mineral, and ascorbic acid contents of Katahdin potatoes. Both Mg sources increased significantly (p < 0.05) the total, nonprotein, and protein nitrogen of both cortex and pith tissues. The pith tissue was significantly (p < 0.05) higher than the cortex in total and nonprotein nitrogen. Potatoes fertilized with Epsom salt were higher in nitrogen than those receiving dolomite. Both sources of Mg significantly (p < 0.05) increased Al and Fe contents of tubers, and the greater increase occurred with Epsom salt. Tubers from soils receiving dolomite were significantly (p < 0.05) higher in manganese and cadmium contents than those receiving Epsom salt. No significant differences were observed in ascorbic acid content with either Mg source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号