首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The functional properties of Caryodendron orinocense protein product were investigated and compared with those of soybean (Glycina maxima). The product protein content was 24.47 g/100 g (Nx6.25). Solubility increased at both sides of the isoelectric point (pH 4.0) and with increased NaCl concentration up to 0.5M. Compared with soybean flour (50% protein), the protein product exhibited higher water and oil absorption, but lower emulsifying activity, emulsion stability, foaming capacity, and foam stability, the last one increase at higher pH. Emulsifying activity, foaming capacity, and foam stability were ionic strength dependent. C. orinocense protein product increased its emulsifying activity steadily from 0.05M to 0.75M NaCl, while it remained almost constant for soybean flour. Foaming capacity increased drastically at pH 10. The minimum time and concentration to form a gel was 20% in 4 min and 10% in 8 min for the Caryodendron protein product and soybean flour, respectively. The bulk density was 0.5056+/-0.0041 g/mL.  相似文献   

2.
Solubility, foaming capacity and foam stability of denatured soy protein concentrate obtained from toasted flour were improved by proteolysis with fungal or bacterial proteases. Emulsifying capacity was unchanged, but emulsion stability decreased; bacterial protease highly improved oil absorption. Also, the bacterial protease was able to solubilize more protein and gave products which foamed more than those obtained with the fungal enzyme. However, the stabilizing properties of the bacterial modified soy protein concentrate at the air/water or oil/water interface were inferior. By limited hydrolysis up to degree of hydrolysis 10% most functional properties were improved without greatly reducing emulsion stability and water absorption.  相似文献   

3.
Sesame seeds were dehulled mechanically and in 10% sodium chloride solution before oil extraction and drying to obtain the flour. The effect of these dehulling methods on the proximate composition, oil and water absorption, emulsification, and foaming properties of the flour was investigated. The effect of desolventizing temperatures (80, 90, and 100°C) on these properties was also investigated. Protein contents of seeds, dehulled mechanically (MDSF) and in 10% NaCl solution (SDSF), were 58.5 and 52.1%, respectively. Carbohydrate and ash contents of both flours also varied. The oil and water absorption capacities of the flours were 268 and 252% for MDSF and 370 and 410% for SDSF, respectively. The emulsion capacity of the MDSF sample was slightly lower (20.0 mL oil/g sample) but more stable than the SDSF sample, whose value was 20.4 mL oil/g sample. The foam capacity of MDSF was, however, higher (48.5%) but less stable than SDSF (33.7%). An increase in desolventizing temperatures of the meal led to increases in oil and water absorption capacities of the flours. Foam and emulsion capacities, on the other hand, decreased with increase in temperature. Desolventizing temperatures had no effect on the stability of the formed emulsion but had a decreasing effect on the stability of the foam.  相似文献   

4.
Certain functional properties of sesame seed flour were obtained after oil extraction from dehulled seed meal was investigated. The protein content in the flour was 69.7% and the least gelation concentration was 6.0%. Water and oil absorption capacities at room temperature (31 ± 2°C) were 2.3 g H2O/g sample and 3.0 g oil/g sample, respectively. The values were higher at 100°C. The emulsification capacity, which was more stable at alkaline conditions, ranged from 25.0 mL oil/g sample at pH 4 to 66.0 mL oil/g sample at pH 10. The foaming capacity was more stable at pH 4 but lower (205.0%). The highest foaming capacity (315.0%) was at pH 2 whereas at pH 10 it was 310.0%. Protein solubility, which was least at pH 4, ranged from 7.9% at pH 2 to 14.2% at pH 10. The viscosity of the flour dispersion ranged from 2.5 cps at 1% concentration to 7.0 cps at 10% concentration. The findings show that sesame flour could impart desirable characteristics when incorporated into products such as ice cream, frozen dessert, sausages, baked food and confections.  相似文献   

5.
A study was carried out for the purpose of obtaining and characterizing a protein concentrate obtained from defatted oil palm cake using alkaline extraction, and compare it with a commercial soy meal. The oil palm cake came from a national industry as a subproduct of the oil extraction of the palm kernels. The moisture, protein, fat, crude fiber and ash content of the oil palm was then determined. The optimum conditions for extraction and precipitation of the proteins were selected. These were the following: extraction at pH, 11.4; adding NaOH 0.06 M solvent; a meal/solvent relation of 1:20 g/ml and extraction time, 20 minutes with magnetic agitation, and precipitation at pH 5.3. The protein concentrate obtained contained: 66.50% protein; 0.07% fat, 0.90% crude fiber, and 3.20% ashes. Then the following functional properties were analyzed: solubility, according to the pH; water absorption (250); oil absorption (175); emulsion activity (27.2), and stability (13.6). The author concludes that the protein concentrate has good water and oil absorption when compared to soymeal; the emulsion, however, was found to be unstable to heat.  相似文献   

6.
以生物质基粗甘油为主要原料,采用一锅法合成粗甘油基多元醇,进一步发泡制备了聚氨酯泡沫材料。在此基础上,利用甲基三氯硅烷对泡沫材料进行疏水改性,制备出改性聚氨酯吸油材料。采用傅里叶红外光谱仪、扫描电镜和热重分析对改性前后泡沫的结构形貌、热稳定性和接触角进行表征,测试了改性聚氨酯吸油材料吸油性能。结果表明:经疏水改性后在泡沫表面合成了聚硅氧烷,水接触角由130°增大至140°,提高了吸油材料疏水性能。改性聚氨酯吸油材料对乙醇、甲醇、氯仿等8种有机物的吸附量范围为16.7~45.2 g/g。经循环使用50次后,吸油材料对柴油和大豆油的吸附量分别为最高吸附量的95.8%和97.6%,表现出优异的吸油性能。  相似文献   

7.
Three mixtures of precooked white corn flour with 10, 20 and 30% amaranth flour were prepared. The sedimentation and consistency of the mixtures differed from those of the white corn flour, but without altering the capacity of dough formation to prepare arepas. The protein, fiber, and ash contents were higher than those of the precooked white corn flour. The functional properties of water and oil absorption increased in 20 and 10%, respectively. During the three-month storage, the protein and fat contents were not altered. Acceptability tests of the arepas were carried out and results indicated that those mixtures prepared with 10% and 20% substitution levels were acceptable from the sensory point of view. The protein quality was analyzed in terms of protein efficiency ratio (PER), which proved to be higher than that of the commercial white corn flour (PER 1.93), and the apparent digestibility was 92%. As far as lysine is concerned, results showed that arepas prepared with the mixture containing 10% amaranth (1.6 g lysine/100 g protein) and 20% (2.0 g lysine/100 g protein) also proved to be higher than the commercial white corn flour arepas (0.7 g lysine/100 g protein). Based on the above findings, enrichment of commercial white corn flour with grain amaranth flour, prior to the preparation of arepas, a product of high consumption in Venezuela as part of the habitual diet, is recommended.  相似文献   

8.
The effects of pH and NaCl concentration on protein solubility, emulsification, and foamability of sesame protein concentrate from dehulled seeds were investigated. The protein content of the concentrate was 70.7%. Protein solubility, emulsion, and foaming capacities varied with pH and ionic strength. Protein solubility, which was least at pH 4, (2.1%) ranged from 6.6% at pH 2 to 13.1% at pH 10. The solubility increased with increase in ionic strength, ranging from 9.8% at 0.0 M to 16.1% at 1.0 M concentration. The emulsion capacity ranged from 6.2 mL oil/g sample at pH 2 to 19.4 mL oil/g sample at pH 10. The emulsion capacity increased from 11.5 mL oil/g sample at 0.0 M to 20.9 mL oil/g sample at 1.0 M salt concentration. Stability of the emulsion increased with increase in NaCl concentration, ranging from 42% at 0.0 M concentration to 70% at 1.0 M concentration, but 0.5 M NaCl produced the most stable foam after 120 min of whipping while the least stable was at 1.0 M.  相似文献   

9.
Two varieties of foxtail millet protein concentrates (white and yellow) were characterized for in vitro trypsin digestibility, functional and physicochemical properties. Millet protein concentrate was easily digested by trypsin in vitro. Essential amino acids were above the amounts recommended by the Food Agricultural Organization/World Health Organization (FAO/WHO/UNU) for humans. Yellow millet protein concentrate (YMPC) possessed the highest differential scanning calorimetry result (peak temperature of 88.98 °C, delta H = 0.01 J/g), white millet protein concentrate (WMPC) had the lowest (peak temperature 84.06 °C, delta H = 0.10 J/g). The millet protein concentrates had molecular sizes around 14.4 and 97.4 kDa. They have U-shape solubility curves. Water-binding capacity was in the range of 5.0 and 7.0 g/g, while oil absorption capacity ranged between 4.8 and 5.9 g/g. WMPC had higher bulk density (0.22 g/mL) and emulsifying capacity than YMPC and Soy Protein Concentrate (SPC). Foam capacity and foam stability ranged from 137 to 73 g/mL for WMPC, from 124 to 61 g/mL SPC and from 124 to 46 g/mL for YMPC. Millet protein concentrates are potential functional food ingredients.  相似文献   

10.
Adhesive qualities of soybean protein-based foamed plywood glues   总被引:1,自引:0,他引:1  
The potential of soy protein-based plywood glues for foam extrusion was evaluated. Standard glue mixes containing the soy flours Honeysoy 90, ISU-CCUR, Nutrisoy 7B, and defatted Soyafluff, and the soy concentrates Arcon F and Procon 2000 showed excellent foaming and adhesive qualities but did not have the ability to refoam. To improve refoaming capability, the formulations were modified by increasing the quantities of soy flour or concentrate so that they provided 3.48 g protein/100 g of glue mix. This was the amount of protein contributed by animal blood when it was used as the extender in the standard formulation for foamed glue. All the modified glues containing soy flour or concentrate had good refoaming properties and adhesive strengths that were at least equal to that of the control glue. Simple cost analysis also indicated that when soy flour was used, the modified formulations were cheaper to produce than the current blood-based glue.  相似文献   

11.
In this study, composition, structure and the functional properties of protein concentrate (WPC) and protein isolate (WPI) produced from defatted walnut flour (DFWF) were investigated. The results showed that the composition and structure of walnut protein concentrate (WPC) and walnut protein isolate (WPI) were significantly different. The molecular weight distribution of WPI was uniform and the protein composition of DFWF and WPC was complex with the protein aggregation. H(0) of WPC was significantly higher (p < 0.05) than those of DFWF and WPI, whilst WPI had a higher H(0) compared to DFWF. The secondary structure of WPI was similar to WPC. WPI showed big flaky plate like structures; whereas WPC appeared as a small flaky and more compact structure. The most functional properties of WPI were better than WPC. In comparing most functional properties of WPI and WPC with soybean protein concentrate and isolate, WPI and WPC showed higher fat absorption capacity (FAC). Emulsifying properties and foam properties of WPC and WPI in alkaline pH were comparable with that of soybean protein concentrate and isolate. Walnut protein concentrates and isolates can be considered as potential functional food ingredients.  相似文献   

12.
Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications.  相似文献   

13.
This study compared two methods for extracting the protein in pennycress (Thlaspi arvense L.) press cake and determined the composition and functional properties of the protein products. Proteins in pennycress press cake were extracted by using the conventional alkali‐solubilization–acid‐precipitation (AP) method or saline‐based (SE) procedure (0.1 M NaCl at 50 °C). The extraction method has a major influence on the purity and functional properties of press cake protein products. AP had a lower protein yield (23 %) but much higher purity (90 % crude protein) compared with SE (45 % yield, 67 % crude protein). AP protein isolate had high foam capacity (120 ml), high foam stability (96 % foam volume retention) and high emulsion stability (24–35 min), and it was resistant to heat denaturation (3 % loss of solubility at pH 2 and pH 10). On the other hand, SE protein concentrate showed remarkably high solubility (>76 %) between pH 2 and 10 and exceptional emulsifying activity (226–412 m2/g protein), but was more susceptible to heat denaturation at pH 7 and pH 10 (65–78 % loss of solubility). These results strongly demonstrate that higher purity pennycress press cake protein can be produced by either saline extraction or acid precipitation and have functional properties that are desirable for non‐food uses.  相似文献   

14.
Flexible plastic foams using soy protein isolate (SPI), soy protein concentrate (SPC), and defatted soy flour (DFS) were produced by interacting proteins with glycerol-propylene oxide polyether triol (polyol), surfactant, triethanolamine (crosslinking agents), tertiary amine (catalyst), and water (blowing agent). The density, compressive stress, resilience, and dimensional stability of foams with SPI, SPC, and DFS increased as the initial concentration of soy protein increased. The foam density increased with increasing weight percentage of SPI, SPC, and DFS. The resilience values of SPI containing foam increased with the increasing addition of SPI up to a maximum 30% SPI addition. An increase in SPI up to 20% caused an increase in the compressive stress (225 kPa) in comparison to control polyurethane foam (187 kPa). The control foam and foam containing 20% DFS had a similar load-deformation relationship. The foam containing 20% SPI and SPC also exhibited a similar shape, but with a higher compressive stress. The compressive stress of all foams was steeply increased after 55% strain, since the foams completely collapsed upon compression.  相似文献   

15.
Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications.  相似文献   

16.
The use of renewable resources (mainly carbohydrates) in rigid polyurethane foam has been known to offer several advantages, such as increased strength, improved flame resistance, and enhanced biodegradability. Less attention has been directed to inexpensive protein‐based materials, such as defatted soy flour. The objectives of this study were to develop water‐blown rigid polyurethane foams, containing defatted soy flour, that have acceptable or improved physical properties which also lower the cost of the foam formulation and to compare the properties of developed foams extended with three kinds of commercial soy flour. Water‐blown low‐density rigid polyurethane foams were prepared with poly(ether polyol)s, polymeric isocyanates, defatted soy flour, water, a catalyst mixture, and a surfactant. Soy flour and the initial water content were varied from 0 to 40% and from 4.5 to 5.5% of the poly(ether polyol) content, respectively. A standard laboratory mixing procedure was followed for making foams using a high‐speed industrial mixer. After mixing, the mixture was poured into boxes and allowed to rise at ambient conditions. Foams were removed from boxes after 1 h and cured at room temperature for 24 h before measurement of the thermal conductivity and for 1 week before other property tests. Foam properties were determined according to ASTM procedures. Measurement of the physical properties (compressive strength, modulus, thermal conductivity, and dimensional stability under thermal and humid aging) of these foams showed that the addition of 10–20% of three kinds of soy flour imparted water‐blown rigid polyurethane foams with similar or improved strength, modulus, insulation, and dimensional stability. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 10–19, 2001  相似文献   

17.
Limited rapeseed protein hydrolysates ranging from 3.1 to 7.7% hydrolysis were produced from isoelectric-precipitated protein isolate. Water absorption, oil absorption, whippability, foam capacity and stability, emulsifying activity, and emulsion stability of the hydrolysates were determined. All protein hydrolysates showed better functional properties than the original protein isolate. Foam and emulsion stability decreased as the degree of hydrolysis increased. The hydrolysate with the lowest degree of hydrolysis showed the best functional properties. These improved functional properties make rapeseed protein hydrolysates a useful product to be used in foods such as breads, cakes, ice creams, meat products, desserts, and salad dressings.  相似文献   

18.
In order to enhance the oil–water separation properties of polyurethane foam (PFU), hydrophobic silica nanoparticles (H-SiO2 NPs) were firstly prepared by incorporating long alkyl chains into silica nanoparticles, and then, it was combined with PFU by in situ loading to fabricate a hydrophobic PFU (H-SiO2 NPs/PUF). When the loading amount of H-SiO2 NPs was 10%, the water contact angle of the modified foam H-SiO2 NPs/PUF-10 reached 147 ± 1°, which proved it was highly hydrophobic. The elongation at break of the foam was increased by 202%, which indicated that it had better resilience and recyclability. In addition, the total pore area and porosity were increased to 16.24 m2/g and 88.43% from 5.46 m2/g and 2.11%, which provided more storage space for adsorption. The oil–water separation experiment showed that the adsorption capacity for most light oils was 11–13 g/g, and that for dichloromethane was as high as 40.5 g/g. After 10 adsorption–desorption cycles, the adsorption capacity only decreased from 15.6 to 14.5 g/g, which was still 93% of the initial adsorption capacity. H-SiO2 NPs/PUF represents good adsorption capacity, recyclability, and recyclability, so it as a carrier has a potential application in the treatment of marine oil spills.  相似文献   

19.
采用油酸为主要原料合成了羟值为236mgKOH/g、酸值为2.8mgKOH/g的可再生聚酯多元醇,并以此聚酯多元醇为原料制备了聚氨酯硬质泡沫。研究了该聚酯多元醇用量对泡沫发泡和力学性能的影响。结果表明,随着聚酯多元醇加入量的增加,形成聚氨酯硬质泡沫的反应速度增加;与纯聚醚多元醇制备的聚氨酯硬质泡沫相比,加入20%~30%的该聚酯多元醇制备的聚氨酯泡沫的尺寸稳定性和压缩强度增加。  相似文献   

20.
Functional properties of hydrothermally cooked soy protein products   总被引:3,自引:2,他引:3  
The effects of hydrothermal cooking on the functional properties of defatted soy flour, aqueous alcohol washed soy protein concentrate, and soy protein isolate were determined in samples that were treated at 154°C by infusing steam under pressure for 11, 19, 30, and 42 s, and then spray dried. Hydrothermal cooking increased the nitrogen solubility index (NSI) of the concentrate from 15 to 56% and altered the solubility profile from a flat profile to one more typical of native soy protein. Hydrothermal cooking also improved foaming and emulsifying properties of the concentrate. For isolate, hydrothermal cooking also improved NSI and foaming and emulsifying properties, although the improvements were less dramatic than with concentrate. NSI and emulsifying properties of the flour were improved by some processing conditions, but foaming properties were not improved by hydrothermal cooking. Dramatically increased protein solubility of concentrate and modestly improved protein solubilities of flour and isolate by hydrothermal cooking, which will also inactivate trypsin inhibitors and microorganisms, have considerable practical significance to protein ingredient manufacturers and those who use these ingredients in foods and industrial products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号