首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BaCu(B2O5) (BCB) was used as sintering aids to lower the sintering temperature of multi-ions doped SrTiO3 ceramics effectively from 1300 °C to 1075 °C by conventional solid state method. The effect of BCB content on crystalline structures, microstructures and properties of the ceramics was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and dielectric measurements, respectively. The addition of BCB enhanced the breakdown strength (BDS) while did not sacrifice the dielectric constant. The enhancement of BDS should be due to the modification of microstructures, i.e., smaller and more homogeneous grain sizes after BCB addition. The dielectric constant of BCB-doped ceramics maintained a stable value with 1.0 mol% BCB, which was dominated by the combination of two opposite effects caused by the presence of second phases and the incorporation of Cu2+ and Ba2+, while further increase was owing to the increase of dissolved Ba2+ ions when the content of BCB is more than 2.0 mol%. The multi-ions doped SrTiO3 ceramics with 1.0 mol% BCB addition showed optimal dielectric properties as follows: dielectric constant of 311.37, average breakdown strength of 28.78 kV/mm, discharged energy density of 1.05 J/cm3 and energy efficiency of 98.83%.  相似文献   

2.
SrTiO3 and ZnO bicrystals with various types of boundaries were fabricated in order to examine their current–voltage characteristics across single grain boundaries. Their grain boundary structures were also investigated by high-resolution transmission electron microscopy. In Nb-doped SrTiO3, electron transport behaviors depend on the type of boundaries. Random type boundaries exhibit highly non-linear current–voltage characteristics, while low angle boundaries show a slight non-linearity. On the contrary, undoped ZnO does not exhibit non-linear current–voltage characteristics in any type of boundaries including random ones. It is suggested that the differences observed in current–voltage properties between the two systems are mainly due to the difference in the accumulation behavior of acceptor-like native defects at grain boundaries. A clear non-linearity is obtained by means of Co-doping even for the highly coherent Σ1 boundary in a ZnO bicrystal. This is considered to result from the production of acceptor-like native defects by Co-doping.  相似文献   

3.
SrTiO3 and ZnO bicrystals with various types of boundaries were fabricated in order to examine their current—voltage characteristics across single grain boundaries. Their grain boundary structures were also investigated by high-resolution transmission electron microscopy. In Nb-doped SrTiO3, electron transport behaviors depend on the type of boundaries. Random type boundaries exhibit highly non-linear current—voltage characteristics, while low angle boundaries show a slight non-linearity. On the contrary, undoped ZnO does not exhibit non-linear current—voltage characteristics in any type of boundaries including random ones. It is suggested that the differences observed in current—voltage properties between the two systems are mainly due to the difference in the accumulation behavior of acceptor-like native defects at grain boundaries. A clear non-linearity is obtained by means of Co-doping even for the highly coherent ∑ 1 boundary in a ZnO bicrystal. This is considered to result from the production of acceptor-like native defects by Co-doping.  相似文献   

4.
BaTiO3-SrTiO3 (BST) thick films (~ 250-390 μm) with layered structures were fabricated by tape-casting and lamination process. Layered composites with various Ba/Sr ratios were obtained by lamination of BaTiO3 (BT) and SrTiO3 (ST) tapes in different spatial configurations (2-2). As-prepared BST ceramics showed much improved sinterability over the laminates of pure BT or pure ST tapes. Dielectric properties of materials were measured in the temperature range of 25 °C to 200 °C. The method of utilizing of layered structures offered flexibility to maximize the energy storage capability at specific operating conditions: (temperature and electric field) by tailoring the dielectric properties through varying the spatial configurations of BT and ST films.  相似文献   

5.
We have performed atomic-level first principle electronic structure calculations on doped grain boundaries (GB) in SrTiO3. This was motivated by the electron holography experiments, which were able to quantify the electrostatic potential and the associated space charge distribution across the Mn-doped GB in this material. The embedded cluster Discrete Variational (DV)-X method was used to determine the charge and the densities of states for several idealized models of a single crystal and symmetrical tilt grain boundaries in SrTiO3. Special attention was given to the role of Mn+2 and Mn+3 acceptors substituting for Ti+4 resulting in charge segregation across the grain boundaries, which was shown in the electron holography experiments. We have found that Mn replacing Ti prefers to have valence charge around +2 and this picture agrees with the experimental observation of negative grain boundary charges in the GB core.  相似文献   

6.
Li0.30Cr0.02Ni0.68O giant dielectric ceramics doped with Al2O3 were prepared by solid-state reaction via sol-gel process. The sintered samples were characterized using X-ray powder diffraction and scanning electron microscopy, and dielectric properties were also investigated. All doped samples showed the single phase of cubic rock-salt structure NiO. With increasing Al2O3 content, the crystallite size and grain size decreased, possibly due to an occurrence of the secondary phases at grain boundaries which inhibit the grain growth. The sample with 0.2 wt.% Al2O3 showed nearly 7 times lower tanδ (2.37) and higher εr (7.25 × 106) measured at 1 kHz and room temperature when compared to the pure sample.  相似文献   

7.
SiO2 doping in Y2O3 stabilized tetragonal ZrO2 (TZP) materials introduced significant change in mechanical properties around 0.3 wt.% doping level [1]. In order to understand the influence of grain boundary structure and chemistry by doping, high purity undoped and SiO2-doped 3Y-TZP samples were studied using high-resolution and analytical TEM. Typical grain boundary structures are different for the two types of samples, while amorphous film was not observed at most grain boundaries. A new EDS analysis method was introduced to detect the weak Si and Y signals which overlap with the predominent Zr peaks. It revealed that Si segregation to the grain boundary saturates at 12 at./nm2 (or 1.5 monolayer of SiO2) when the SiO2 doping level reached and surpassed 0.3 wt.%. It is the segregated atoms which enhanced the grain boundary diffusivity and therefore altered the deformation mechanism.  相似文献   

8.
The influence of B2O3, and Al2O3 as segregative additives in modifying the ρ–T characteristics has been studied in BaTiO3 ceramics with positive temperature coefficient of resistance (PTCR). Reaction of Al2O3 at the grain boundary regions of BaTiO3 ceramics leads to the segregation of the secondary phase, BaAl6TiO12 resulting in broad PTCR jump, whereas B2O3 addition gives rise to steeper resistivity jump. Microstructure studies by SEM reveal the formation of coherent second phase layer of barium aluminotitanate surrounding the BaTiO3 grains. The EDX results shows varying Al to Ti ratio in the early stage of phase formation in BaAl6TiO12 resulting in electrically active layer around the BaTiO3 grains. The TiO2-excess melt formation results in lower resistivity for 2–4% Al2O3 containing n-BaTiO3 ceramics whereas at higher alumina contents, BaAl6TiO12 phase becomes dominant leading to higher resistivity in the sample. Complex impedance analyses support the three-layer regions, corresponding to the contributions from grain interior resistance (R g), grain boundary resistance (R gb), and that from secondary phase (R sec). Electron paramagnetic resonance spectroscopy (EPR) indicated barium vacancies, V Ba / as the major electron trap centers which are activated across the tetragonal-to-cubic phase transition. A charge trapping mechanism is proposed wherein the segregation of secondary phases bring carrier redistribution among the various acceptor states thereby affecting the electrical conductivity of n-BaTiO3 ceramics. The presence of Al3+–O–Al3+ or Ti4+–O–Al3+ type hole centers at the grain boundary layer (GBL) regions results in charge redistribution across the modified phase transition temperature due to symmetry-related vibronic interactions resulting in broad PTCR characteristics extending to higher temperatures.  相似文献   

9.
Single crystal growth of lead-based piezoelectric ceramics Pb(Mg1/3Nb2/3)0.68Ti0.32O3 (PMN-32PT) and Pb(Mg1/3Nb2/3)0.42(Ti0.638Zr0.362)0.58O3 (PMN-37PT-21PZ) ceramics via templated grain growth (TGG) was investigated. (001)- and (111)-oriented BaTiO3 (BT) single crystals and (001)-oriented SrTiO3 (ST) single crystals (of approximately 2.5 × 2.5 × 1 mm) were utilized as seeds for the growth experiments. The piezoelectric single crystals were produced in a process that involves at first hot pressing of single crystal in cold isostatically pressed ceramics followed by subsequent sintering of the samples. Growth of (001)-oriented single crystals with BT seeds was observed in both PMN-32PT and PMN-37PT-21PZ matrices. The measured growth lengths were up to 140 and 65 μm, respectively. The grown (001)-oriented single crystals grown were rectangular. The measured growth lengths of the pyramidal-shaped (111) BT single crystals were up to 1 mm, which is much larger than the growth lengths of the (001) single crystals. Experiments on (001) ST-seeded single crystals were not successful. No single crystal growth was observed due to the dissolution of the ST single crystals in the PMN-PZT matrix. The differences were explained by defect-chemical considerations.  相似文献   

10.
Densification and anisotropic grain growth in Sr2Nb2O7   总被引:3,自引:0,他引:3  
Sr : Nb stoichiometry and donor-doping with La were found to affect densification behavior and anisotropic grain growth in Sr2Nb2O7 ceramics. La-doping improved the high temperature a.c. resistivity, but inhibits grain growth by grain boundary pinning. The presence of excess Nb was found to promote anisotropic grain growth by forming a liquid at the grain boundaries in both undoped and doped Sr2Nb2O7. Anisotropic grain growth in La-doped Sr2Nb2O7 can be controlled by incorporating large template particles in a Nb-rich matrix. High sintered densities (98% of theoretical) were achieved in both undoped and La-doped samples.  相似文献   

11.
Strontium titanate and barium titanate ceramics prepared by a reaction-sintering process were investigated. The mixture of raw materials of stoichiometric SrTiO3 and BaTiO3 was pressed and sintered into ceramics without any calcination stage involved. A density 4.99 g/cm3 (97.5% of the theoretic value) was found in SrTiO3 after 6 h sintering at 1,370 °C. Grains less than 1.5 μm were formed at 1,300–1,330 °C and became 2.2–3.3 μm at 1,350–1,370 °C SrTiO3. A density 5.89 g/cm3 (97.9% of the theoretic value) was found in BaTiO3 after 6 h sintering at 1,400 °C. Merged grains were observed in BaTiO3 and were less than 10 μm after sintered at 1,400 °C.  相似文献   

12.
BiFeO3 and Bi0.925Nd0.075FeO3 ceramics were prepared by co-precipitation method. The crystal structure and electrical properties of the samples were characterized by X-ray diffraction (XRD), impedance spectra and leakage current measurement. XRD result implied that the impurity phases are weakened by suitably doping Nd. The impedance spectra of BiFeO3 sample indicate that low grain boundary resistance and non Debye-type relaxation below the Néel temperature. Complex impedance spectra suggested that the doped samples are closer to Debye-type, and the grain boundary resistance increases which lead to low leakage current density.  相似文献   

13.
Very stable and highly reproducible current-limiting characteristics have been observed for polycrystalline ceramics prepared from sintering mixtures of coarse-grained, donor-doped BaTiO3 (tetragonal) as the major phase and ultrafine, undoped cubic perovskite such as BaSnO3, BaZrO3, SrTiO3 or BaTiO3 (cubic) as the minor phase. The initial linear current-voltage (I-V) relationship becomes current-limiting with increase in applied potential and the consequent onset of thermal equilibrium. The strong current maximum of theI-V curve of donor-doped BaTiO3 can be eliminated when the ceramics are constituted of mixed phases. The voltage drop at the insulating grain boundaries minimizes the temperature gradient between the interior and the surface, and subdues the thermal runaway. The magnitude of the limiting current, and hence the power-handling capacity, can be varied with the controlled addition of grain boundary layer modifiers and by optimizing the processing parameters. The dielectric constant versus temperature or voltage variation in power dissipation with ambient temperature and resistivity-temperature relations point to the necessity of the mixed phase character for the current-limiting property.  相似文献   

14.
We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the specimen lie in the range 24–40 nm. It is seen that the dielectric permittivity in doped specimens is enhanced by an order of magnitude compared to undoped barium titanate ceramics. The dielectric permittivity shows maxima at 0.3 mole% doping of Fe ion and 0.6 mole% of Ni ion. The unusual dielectric behaviour of the specimens is explained in terms of the change in crystalline structure of the specimens.  相似文献   

15.
The electrical conductivity of Mn doped SnO2 systems prepared by an organic route (Pechini’s method) has been investigated as a function of antimony and niobium concentration. The conductivity increases with the increase of both concentration ions, however, in a different manner. While the conductivity of niobium doped ceramics increases with the power of 1.6 for the entire range of concentrations studied (0.01–0.7 mol%), the conductivity of antimony doped ceramics increases with the power of 1.9 in the range 0.01–0.05 mol% of Sb; 3.7 in the range 0.05–0.30 mol% and 1.8 in the range 0.30–0.70 mol%. This behavior is attributed to the existence of two stable oxidation states for antimony: Sb3+ and Sb5+, while for niobium there is only one: Nb5+. The power of 3.7 for Sb would be related to the segregation of this ion on the grain boundary accompanied by an additional contribution coming from the substitution of Sn2+ by Sb3+ on the grain surface.  相似文献   

16.
Fractal dimensions of grain boundary region in doped SnO2 ceramics were determined based on previously derived fractal model. This model considers fractal dimension as a measure of homogeneity of distribution of charge carriers. Application of the derived fractal model enables calculation of fractal dimension using results of impedance spectroscopy. The model was verified by experimentally determined temperature dependence of the fractal dimension of SnO2 ceramics. Obtained results confirm that the non-Debye response of the grain boundary region is connected with distribution of defects and consequently with a homogeneity of a distribution of the charge carriers. Also, it was found that CT −1 function has maximum at temperature at which the change in dominant type of defects takes place. This effect could be considered as a third-order transition.  相似文献   

17.
R-curves and subcritical crack growth curves (VKI) were determined for undoped, K doped (PKZT) and Nb doped (PNZT) lead zirconate titanate (PZT) ceramics and the results are discussed including the effect of doping, grain size and the polarisation state. A pronounced crack growth resistance was observed in the soft PNZT ceramic, which is attributed to ferroelastic domain switching. Subcritical crack growth in the studied PZT materials is governed by both environmentally stress-induced corrosion at the crack tip and the crack shielding due to domain switching. Increasing domain switching capacity by structural modification of the material (i.e. by donor doping or by increasing the grain size) or by poling sifts the VKI curve to higher values of the stress intensity factor.  相似文献   

18.
Ba0.6Sr0.4TiO3 (BST) ceramics with 0.5 mol% various trivalent rare-earth additions prepared by a solid-state route are investigated. A strong correlation is observed between the microstructure, dielectric properties and rare-earth element dopant. The results display that comparing with the lattice constants of undoped and doped rare-earth BST, the structure transforms from cubic to tetragonal structure. In addition, the dopant improves the tetragonal distortion with the ionic radius of rare earth decreasing, and then deteriorates it with further decreasing. Large ions rare-earth additions effectively suppress the grain growth of BST. It is found that the temperature-permittivity characteristics for the BSTR (R, namely, rare earth) system could be controlled using various rare-earth elements. Especially, such as Sm, Eu, Gd dopants are effective to satisfy the tunable microwave devices application due to the decrease of permittivity and the improvement of dissipation factors of BST ceramic with the accompanying high-tunability.  相似文献   

19.
The effect of consolidation pressure and crystallite size of powders crystal phases of TiO2 on sintered microstructure of TiO2 ceramics doped with 0.25 mol % Nb and 1.0 mol % Ba were investigated. Also, the development sequence of abnormal grain growth of (niobium, barium) doped TiO2 ceramics was proposed. The second phases of as-sintered surface were determined. The dielectric properties of Ag-electroded samples were correlated with the resistivity of the bulk (Nb, Ba) doped TiO2 ceramics. Abnormal grain growth lowered the resistivity of bulk material of (Nb, Ba) doped TiO2 ceramics, and moved the relaxation frequency of fan δ to high frequency region over 105 Hz. Controlling the sintered microstructures can obtain reasonably good dielectric properties.  相似文献   

20.
Sr1–1.5xSmxTiO3 (x = 0–0.025) ceramics were fabricated by the conventional solid-state reaction method. Experimental results show that all ceramics are pure cubic perovskite structure, and the lattice parameters and average grain sizes of the ceramics decrease with the Sm concentration increasing. Compared with the pure SrTiO3 ceramics, the relative dielectric constant could be enhanced to 3,681 (at 1 kHz and room temperature)with dielectric loss less than 0.02 when x = 0.02. The good stability of ε r under 0–20 kV/cm is beneficial to applying in high voltage conditions. Two sets of relaxation peaks of Sm doped SrTiO3 ceramics are observed which are all related to the oxygen vacancies. The medium-temperature relaxation is ascribed to the coupling of oxygen vacancies with strontium vacancies and the origin of high-temperature relaxation is the motion of oxygen vacancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号