首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of Al8B4C7 used as an antioxidant in MgO–C refractories and the behavior of Al8B4C7 in CO gas were investigated in the present study. Al8B4C7 was found to react with CO gas, to form Al2O3( s ), B2O3( l ), and C( s ), at temperatures >1100°C. The Al2O3 reacts with MgO to form MgAl2O4 near the surface of the material. At the same time, B2O3( l ) evaporates and reacts with MgO, to form a liquid phase, at >1333°C, the eutectic point between 3MgO·B2O3 and MgO. The coexistence of the liquid and MgAl2O4 makes the protective layer more dense, thus inhibiting oxidation of the refractory. At >1333°C, the process apparently is controlled by oxygen diffusion, whereas it is controlled by chemical reaction when the temperature is <1333°C.  相似文献   

2.
Depending on the operating temperature, gas sensors that are based on n-type-semiconductor, polycrystalline gallium oxide (Ga2O3) thin films are used to detect oxygen (at temperatures, T, of 850°C) or reducing gases (T 900°C). At high temperatures (T 900°C), beta-Ga2O3has an oxygen deficiency in the crystal lattice that is in dynamic equilibrium with the oxygen in the surrounding atmosphere. Variations in the conductivity of the sensor are caused by variations of the concentration of ionized oxygen vacancies. Therefore, a reduction in the proportion of oxygen or an increase in the concentration of reducing gases in the atmosphere in which the sensor is located leads to an increasing number of conducting electrons and, hence, an increasing conductivity. During a research project to investigate the long-term stability of thin beta-Ga2O3 films in a variety of strongly reducing atmospheres at T > 600°C, a previously unknown phenomenon has been observed when measurements on low oxygen partial pressures (pO210-10 Pa (10-15bar)) have been made. A sharp decrease in sensor conductivity, by several orders of magnitude, is observed each time when pO2 is reduced to a value of <10-15bar at temperatures in the range of ˜750°-1000°C. The reason for this may be a phase transition in the β-Ga2O3 layer. However, attempts to freeze the new state with subsequent identification by X-ray diffractometry have not succeeded in identifying the new phase.  相似文献   

3.
Transparent Cr4+-Doped YAG Ceramics for Tunable Lasers   总被引:1,自引:0,他引:1  
Transparent Cr4+:YAG (Y3AlSO12) ceramics doped with Ca and Mg as counterions and SiO2 as a sintering aid were fabricated by a solid-state reaction method using high-purity powders of Al2O3, Y2O3, and Cr2O3. The mixed powder compacts were sintered at 1750°C for 10 h in oxygen, or 1750°C for 10 h under vacuum, and then annealed at 1400°C for 10 h in oxygen. Cr-doped YAG ceramics sintered in oxygen had a brown color and characteristic absorption by Cr4+ ions, whereas these YAG ceramics sintered under different conditions (vacuum + oxygen) had a green color and absorption at ∼590 and 430 nm by Cr3+ ions. The absorption behavior of YAG ceramics sintered in oxygen was almost equivalent to that of Cr4+:YAG single crystals fabricated by the Czochralski method.  相似文献   

4.
Phase equilibria in the system MnO–CoO–Cr2O3 were investigated at 1300°C under controlled oxygen partial pressures by using the gas equilibration technique. The CoO activities in various phase assemblages of the system were measured by determining the partial pressures of oxygen in the gas phase for coexistence with metallic cobalt. The activity data revealed that at 1300°C, MnO–CoO and MnCr2O4–CoCr2O4 solid solutions exhibit mild positive departures from ideal behavior. The activities in the stoichiometric spinel solutions were found to be in good agreement with those predicted from a model based on cation distribution equilibria. The standard free energy of formation of the compound CoCr2O4 from its oxide components at 1300°C was determined as −37 636 J/mol, while that for MnCr2O4 was found as −44 316 J/mol.  相似文献   

5.
Single-crystal and polycrystalline films of Mg-Al2O4 and MgFe2O4 were formed by two methods on cleavage surfaces of MgO single crystals. In one procedure, aluminum was deposited on MgO by vacuum evaporation. Subsequent heating in air at about 510°C formed a polycrystalline γ-Al2O8 film. Above 540°C, the γ-Al2O, and MgO reacted to form a single-crystal MgAl2O4 film with {001} MgAl2O4‖{001} MgO. Above 590°C, an additional layer of MgAl2O4, which is polycrystalline, formed between the γ-Al2O3 and the single-crystal spinel. Polycrystalline Mg-Al2O4 formed only when diffusion of Mg2+ ions proceeded into the polycrystalline γ-Al2O3 region. Corresponding results were obtained for Mg-Fe2O4. MgAl2O4 films were also formed on cleaved MgO single-crystal substrates by direct evaporation, using an Al2O3 crucible as a source. Very slow deposition rates were used with source temperatures of ∼1350°C and substrate temperatures of ∼800°C. Departures from single-crystal character in the films may arise through temperature gradients in the substrate.  相似文献   

6.
Phase relations in the spinel region of the system FeO-Fe2O3-Al2O3 were determined in CO2 at 1300°, 1400°, and 15000°C and for partial oxygen pressures of 4 × 10−7 and 7 × 10−10 atmospheres at 15OO°C. The spinel field extends continuously from Fe3O4-x to FeAl2O4+z.  相似文献   

7.
Ultrafine (<0.1 μm) high-purity θ-Al2O3 powder containing 3–17.5 mol%α-Al2O3 seeds was used to investigate the kinetics and microstructural evolution of the θ-Al2O3 to α-Al2O3 transformation. The transformation and densification of the powder that occurred in sequence from 960° to 1100°C were characterized by quantitative X-ray diffractometry, dilatometry, mercury intrusion porosimetry, and transmission and scanning electron microscopy. The relative bulk density and the fraction of α phase increased with annealing temperature and holding time, but the crystal size of the α phase remained ∼50 nm in all cases at the transformation stage (≤1020°C). The activation energy and the time exponent of the θ to α transformation were 650 ± 50 kJ/mol and 1.5, respectively. The results implied the transformation occurred at the interface via structure rearrangement caused by the diffusion of oxygen ions in the Al2O3 lattice. A completely transformed α matrix of uniform porosity was the result of appropriate annealing processes (1020°C for 10 h) that considerably enhanced densification and reduced grain growth in the sintering stage. The Al2O3 sample sintered at 1490°C for 1 h had a density of 99.4% of the theoretical density and average grain size of 1.67 μm.  相似文献   

8.
The quenching technique has been used to determine equilibrium relations in the system manganese oxide-Cr2O3 in air in the temperature range 600° to 1980°C. The following isobaric invariant situations have been determined: At 910°± 5°C tetragonal Mn3O4 solid solution, cubic Mn3O4 solid solution (=spinel), Mn2O3 solid solution, and gas coexist in equilibrium. Cubic Mn3O4 solid solution, Cr2O3 solid solution, liquid, and gas are present together in equilibrium at 1970°± 20°C. The invariant situation at which cubic Mn3O4 solid solution, Mn2O3 solid solution, Cr2O3 solid solution, and gas exist together in equilibrium is below 600°C.  相似文献   

9.
Oxidation studies were conducted on Al2O3-SiC and mullite-SiC composites at 1375° to 1575°C in O2 and in Ar-1% O2. The composites were prepared by hot-pressing mixtures of Al2O3 or mullite and SiC powders. The reaction products contained alumina, mullite, an aluminosilicate liquid, and gas bubbles. The parabolic rate constants were about 3 orders of magnitude higher than those expected for the oxidation of SiC. Higher rates are caused by higher oxygen permeabilities through the reaction products than through pure silica. Our results suggest that oxygen permeabilities are comparable in the three condensed phases observed in the reaction products.  相似文献   

10.
Thermal reactions of mixtures of ultrafine particles of magnesium hydroxide (Mg(OH)2) and kaolinite in a composition of MgO:Al2O3:2SiO2 were investigated to obtain dense cordierite ceramics at temperatures <1000°C. While heating the mixture of kaolinite and Mg(OH)2 with the equivalent of 2 mass% of boron oxide (B2O3) (in the form of magnesium borate, 2MgOB2O3), an amorphous phase formed at a temperature of ∼850°C after thermal decomposition. Firing the mixture at a temperature of 900°C yielded dense ceramics with an apparent porosity of almost zero. The addition of B2O3 promoted the densification at 850°-900°C and accelerated the crystallization of alpha-cordierite. The specimen with 3 mass% of B2O3 that was fired at a temperature of 950°C showed a linear thermal expansion coefficient of ∼3 × 10−6 K−1, a bending strength of >200 MPa, and a relative dielectric constant of 5.5 at 1 MHz. These cordierite ceramics may be used as substrate materials for semiconductor interconnection applications.  相似文献   

11.
The reactions between hot-pressed calcium hexaluminate (CaAl12O19, hibonite) and silicon carbide (SiC) at 1100°-1400°C in air and nominal argon atmospheres were investigated. In inert atmospheres, there was no evidence of reaction at temperatures up to at least 1400°C. In air, the oxidation of SiC produced a layer of silica or a multicomponent amorphous silicate (depending on impurities) that reacted with CaAl12O19. At temperatures below 1300°C, the reaction resulted in the stratification of two distinct interfacial layers: a partially devitrified CaO-Al2O3-SiO2 glass adjacent to SiC and a CaAl2Si2O8 (anorthite) layer adjacent to hibonite. At 1400°C, a large amount of liquid was formed, the majority of which was squeezed out from between the reaction couple. No distinct layer of anorthite was present; instead, the anorthite was replaced by a layer of alumina between the glass-rich layer and hibonite. An activation energy of 290 kJ/mol was determined for the reaction, which is consistant with oxygen diffusion through a calcium aluminosilicate glass. The reaction between rare-earth hexaluminates and SiO2 was predicted to produce a more-viscous glass than CaAl12O19 and SiO2 and, therefore, have slower reaction kinetics, because of lower mass transport in the glass.  相似文献   

12.
The phase equilibria in the Y2O3-Nb2O5 system have been studied at temperatures of 1500° and 1700°C in the compositional region of 0-50 mol% Nb2O5. The solubility limits of the C-type Y2O3 cubic phase and the YNbO4 monoclinic phase are 2.5 (±1.0) mol% Nb2O5 and 0.2 (±0.4) mol% Y2O3, respectively, at 1700°C. The fluorite (F) single phase exists in the region of 20.1-27.7 mol% Nb2O5 at 1700°C, and in the region of 21.1-27.0 mol% Nb2O5 at 1500°C, respectively. Conductivity of the Y2O3- x mol% Nb2O5 system increases as the value of x increases, to a maximum at x = 20 in the compositional region of 0 ≤ x ≤ 20, as a result of the increase in the fraction of F phase. In the F single-phase region, the conductivity decreases in the region of 20-25 mol% Nb2O5, because of the decrease in the content of oxygen vacancies, whereas the conductivity at x = 27 is larger than that at x = 25. The conductivity decreases as the value of x increases in the region of 27.5 ≤ x ≤ 50, because of the decrease in the fraction of F. The 20 mol% Nb2O5 sample exhibits the highest conductivity and a very wide range of ionic domain, at least up to log p O2=−20 (where p O2 is given in units of atm), which indicates practical usefulness as an ionic conductor.  相似文献   

13.
Solid-state reaction and annealing of melts of samples in the R2O3-Ta2O5system (R is a rare-earth element, i.e., La, Nd, Sm, Ho, Er, and Yb) revealed a defect-fluorite phase (F-phase) at high temperatures. The formation region of this F-phase was in the region of ˜70-80 mol% R2O3for small rare-earth ions, such as erbium and ytterbium, but only in the region of ˜80 mol% R2O3at temperatures of >1800°C for large rare-earth ions, such as the lanthanum-through-samarium series. This F-phase exhibited disordered cation and anion sublattices, such as (R0.8Ta0.2)(O1.7box0.3). The F-phase decomposed to R2O3 and an ordered phase–R3TaO7 (orthorhombic weberite)–through a eutectic reaction at temperatures in the range of 1500°-1700°C for gadolinium or larger rare-earth ions, whereas the F-phase was stable at 1500°C for the small rare-earth ions (the erbium-through-ytterbium series).  相似文献   

14.
Layered composites of alternate layers of pure Al2O3(thickness of 125 μ m) and 85 vol% Al2O3-15 vol% ZrO2 that was stabilized with 3 mol% Y2O3(thickness of 400 μ m) were obtained by sequential slip casting and then fired at either 1550° or 1700°C. Constant-strain-rate tests were conducted on these materials in air at 1400°C at an initial strain rate of 2 × 10-5 s-1. The load axis was applied both parallel and perpendicular to the layer interfaces. Catastrophic failure occurred for the composite that was fired at 1700°C, because of the coalescence of cavities that had developed in grain boundaries of the Al2O3 layers. In comparison, the composite that was fired at 1550°C demonstrated the ductility of the Al2O3+YTZP layer, but at a flow stress level that was determined by the Al2O3 layer.  相似文献   

15.
Alumina Dissolution into Silicate Slag   总被引:1,自引:0,他引:1  
Dissolution of commercial white fused and tabular Al2O3 grains into a model silicate slag was investigated after 1 h at 1450° and 1600°C. Formation of CA6 and hercynitic spinel layers was observed at all Al2O3/slag interfaces. The spinel layer was not always continuous, and so, compared with the CA6 layer, it had a less-significant effect on the dissolution process. The CA6 layer that formed adjacent to the tabular Al2O3 was incomplete at both temperatures, so that its dissolution was not a totally indirect process. These incomplete CA6 and spinel layers meant that slag penetrated into the tabular Al2O3 grains, which, thus, were corroded and disintegrated by the penetrating slag. There was evidence of liquid in the CA6 layer adjacent to the fused Al2O3 after 1 h at 1450°C, which also enabled direct dissolution. After 1 h at 1600°C, fused Al2O3 revealed a thick (∼60 μm), continuous and unpene-trated CA6 layer, indicating fully indirect dissolution at this temperature.  相似文献   

16.
Since the difference between oxygen-ion and cation diffusion coefficients is greater for α-Cr2O3 than for α-Fe2O3 or α-Al2O3, a study of initial-sintering kinetics was undertaken to show unequivocally which species is rate controlling. Fine powders of α-Cr2O3, obtained by thermal decomposition of reagent-grade (NH4)2Cr2O7, were lightly compacted and their isothermal rates of shrinkage were determined between 1050° and 1300°C. Resultant data follow volume-diffusion sintering models, and calculated diffusion coefficients agree with, those measured for oxygen ions in α-Cr2O3. There is little evidence that oxygen diffusion along grain boundaries becomes so enhanced that chromium ions are left in control of the process.  相似文献   

17.
The oxidation behaviors of monolithic Si3N4 and nanocomposite Si3N4-SiC with Yb2O3 as a sintering aid were investigated. The specimens were exposed to air at temperatures between 1200° and 1500°C for up to 200 h. Parabolic weight gains with respect to exposure time were observed for both specimens. The oxidation products formed on the surface also were similar, i.e., a mixture of crystalline Yb2Si2O7 and SiO2 (cristobalite). However, strength retention after oxidation was much higher for the nanocomposite Si3N4-SiC compared to the monolithic Si3N4. The SiC particles of the nanocomposite at the grain boundary were effective in suppressing the migration of Yb3+ ions from the bulk grain-boundary region to the surface during the oxidation process. As a result, depletion of yttribium ions, which led to the formation of a damaged zone beneath the oxide layer, was prevented.  相似文献   

18.
Stoichiometric NiAl2O4, CuAl2O4, and ZnAl2O4 spinels were prepared and equilibrated at temperatures from 600° to 1400°C. The parameters u and x , denoting the oxygen position and fraction of divalent cations on tetrahedral sites, respectively, were determined from a detailed X-ray diffraction analysis. In NiAl2O4, x increased from 0.07 at 595° to 0.26 at 1391°C; in CuAl2O4, x decreased from 0.68 at 613° to 0.64 at 1195°C; and in ZnAl2O4, x decreased from 0.96 at 905° to 0.94 at 1197°C. The form of the temperature dependence of x could not be described using theoretically based equations advanced in the literature. A more general equation which allows for a non-distributional contribution to the configurational entropy was derived and observed to properly describe the temperature dependence; the results indicate that short-range order is of definite significance in these intermediate aluminate spinels.  相似文献   

19.
Activities of NiO were measured in the oxide and spinel solutions of the system MnO–NiO–Al2O3 at 1300° and 1400° C with the aim of deriving information on the thermodynamic properties of the spinel phases. Synthetic samples in selected phase assemblages of the system were equilibrated with metallic nickel and a gas phase of known oxygen partial pressures at a total pressure of 1 atm. The data on NiO activities and directions of conjugation lines between coexisting oxide and spinel phases were used to establish the activity–composition relations in spinel solid solutions at 1300° and 1400°C. The MnAl2O4–NiAl2O4 solid solutions exhibit considerable negative deviations from ideality at these temperatures. The free energy of formation of MnAl2O4 from its oxide components (MnO + Al2O3) at 1300° and 1400°C is calculated to be −24.97 and −26.56 kJ. mol−1, respectively. The activities determined in the stoichiometric spinel solid solutions are more negative as compared with those predicted from cation distribution models.  相似文献   

20.
The increasing order of corrosion resistance to H2 gas flowing fast enough to ensure that the reaction is the slow step is fused silica, aluminosilicate glass, and mullite at T =1300° to 1500° C; the activation energies are 347.3, 358.6, and 389.1 kj/mol (83.0, 85.7, and 93.0 kcal/mol), respectively. No detectable reaction with a-Al2O3 was observed. Addition of a small amount of CaO to the glass reduced its activation energy (283.7 kj/mol (67.8 kcal/mol)) and made its reactivity with H2 similar to that of mullite at high temperatures. The reaction product for the glasses consisted of a porous zone composed of an intermediate layer close to mullite in composition and an outer layer of a-AI2O3. The reaction product for mullite consisted of a porous a-Al2O3 residue layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号