首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
赵丽敏蔡亮 《铸造》2017,(9):979-982
研究了采用不同焊接工艺参数时铸造Al Si14高硅铝合金搅拌摩擦焊接头的微观组织、力学性能及断口形貌。结果表明,焊核区组织由于发生动态再结晶,晶粒非常细小;热力影响区紧靠焊核区,在较高转速时出现被拉长的组织;热影响区基体α相及共晶Si晶粒尺寸相对于母材均有所增加。在搅拌头转速为1 300 r/min、焊速为100 mm/min时,获得的接头抗拉强度可达到母材的92%;断裂发生在前进侧热影响区,断裂方式是韧性与脆性的混合型断裂;接头显微硬度近似呈"马鞍"形分布,在热力影响区附近硬度低于母材硬度。  相似文献   

2.
2219-T87铝合金搅拌摩擦焊接头组织与力学性能   总被引:8,自引:4,他引:4       下载免费PDF全文
采用搅拌摩擦焊方法对8mm厚2219-T87铝合金进行了焊接.对接头的宏观形貌、微观组织、显微硬度及断口形貌进行了分析.结果表明,焊核区为细小的等轴晶粒,晶粒尺寸远小于母材;热机影响区发生了弯曲变形;热影响区组织出现了明显粗化.前进边热机影响区和焊核区形成明显分界线,后退边相对模糊.搅拌摩擦焊对接头各区域沉淀相分布形态有重要影响.接头室温拉伸强度可以达到母材的70%以上.沿焊缝横截面的显微硬度的分布显示,硬度最低点位于后退侧热影响区区域,断裂位置位于后退侧热影响区处,接头的断裂形式为韧性断裂.  相似文献   

3.
采用不同的焊接参数对3 mm厚7A04铝合金板进行焊接,并对接头的组织、沉淀相、力学性能及断口形貌进行了分析. 结果表明,焊核区组织发生动态再结晶,形成细小的等轴晶粒,热影响区晶粒发生明显粗化. TEM分析结果显示,经搅拌摩擦焊后,焊核区部分沉淀相溶解. 焊核区晶粒尺寸随焊接速度增大而减小. 当焊接速度为120 mm/min,旋转速度为800 r/min时,接头强度达到最大值 454.2 MPa,为母材的95%,断后伸长率为3.97%,为母材的70%. 硬度测试显示搅拌摩擦焊接头发生软化,焊缝区域硬度低于母材,硬度值最低点出现在热影响区;拉伸断口形貌SEM图像表明接头断裂方式为韧性和脆性混合型断裂.  相似文献   

4.
采用4种形状的搅拌针对3 mm厚的6082-T6铝合金板进行静轴肩搅拌摩擦焊焊接(SSFSW),研究了不同形状搅拌针焊接接头的宏观形貌、微观形貌及力学性能,以及搅拌针的产热。结果表明,三角形搅拌针与四边形搅拌针产热较低,动静体积比较大,接头处塑性金属流动性强,焊接过程中焊缝顶部与底部温差较小,可以形成无缺陷的SSFSW接头;XRD分析表明,焊核区无新的物相产生,三角形搅拌针焊接接头焊核区微晶尺寸最小;各接头的硬度均呈“U”形分布,最低点位于后退侧热机影响区与焊核区交界处,三角形搅拌针接头的硬度整体略高;三角形搅拌针焊接接头的抗拉强度与断后伸长率最高,分别为202.9 MPa和3.8%;拉伸断口形貌分析表明,所有接头均为韧性断裂。  相似文献   

5.
《铸造》2017,(9)
研究了采用不同焊接工艺参数时铸造Al Si14高硅铝合金搅拌摩擦焊接头的微观组织、力学性能及断口形貌。结果表明,焊核区组织由于发生动态再结晶,晶粒非常细小;热力影响区紧靠焊核区,在较高转速时出现被拉长的组织;热影响区基体α相及共晶Si晶粒尺寸相对于母材均有所增加。在搅拌头转速为1 300 r/min、焊速为100 mm/min时,获得的接头抗拉强度可达到母材的92%;断裂发生在前进侧热影响区,断裂方式是韧性与脆性的混合型断裂;接头显微硬度近似呈"马鞍"形分布,在热力影响区附近硬度低于母材硬度。  相似文献   

6.
焊后热处理对高强铝合金搅拌摩擦焊接头的影响   总被引:4,自引:0,他引:4  
对航空用厚5 mm的7075铝合金搅拌摩擦焊试样热处理前后的焊缝微观组织及性能进行研究.结果表明:当搅拌头旋转速度为600 r/min、焊接速度为60 mm/min时,接头抗拉强度达到381 MPa,是母材强度的84.6%;焊核区由6~7μm等轴晶组成;经热处理后接头抗拉强度达到415 MPa;硬度的最低处在前进侧热机影响区:断口的微观形貌具有强化相的韧窝特征,且断裂儿乎发生在前进侧的热机影响区;7075铝合金搅拌摩擦焊接头的薄弱点在热机影响区.  相似文献   

7.
在不同的搅拌头转速及焊接速度下,对2 mm厚AlCuLi合金进行了搅拌摩擦焊接.结果表明,焊核区由细小等轴再结晶晶粒组成.随搅拌头转速增加,晶粒尺寸逐渐增加;随焊接速度增加,晶粒尺寸略有减小.TEM分析表明,焊核区的析出相大部分溶解,在随后的冷却过程中形成粗大的析出相,而在热影响区析出大量的粗大平衡相.在较低的焊接速度(80 mm/min)下,接头在热影响区的硬度最低点发生断裂,随搅拌头转速增加,接头强度逐渐升高,最高可达母材的87%,延伸率约为10%.而在较高的焊接速度(200 mm/min)下,搅拌头转速较低时,焊核区材料流动不充分,样品在焊核处发生断裂,强度较低,SEM分析表明,断口出现材料流动不充分导致的缺陷;随搅拌头转速增加,断口处缺陷明显减少,对强度影响不显著,接头强度可达母材的84%.  相似文献   

8.
对8 mm厚度2195铝锂合金进行了搅拌摩擦焊平板对接焊试验,利用光学显微镜和扫描电镜观察分析了焊接接头的显微组织和断口形貌特征,并对接头常温、低温拉伸性能和显微硬度进行了测试。结果表明,接头整体上宽下窄,呈V字形,由焊核区、热力影响区、热影响区和轴肩影响区组成;-196℃条件下,接头抗拉强度及断后伸长率分别达到母材的71. 8%,53. 8%;焊件的硬度分布形貌均呈W状,其中焊核区微观硬度最高,热影响区微观硬度最低;接头断裂位置均位于热影响区附近,断裂特征属于典型的韧性断裂。  相似文献   

9.
常规FSW与双轴肩FSW对铝合金接头组织和性能的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
对采用常规FSW和双轴肩FSW所得到焊接接头性能进行试验研究,测试了两种焊接得到的焊接接头的抗拉强度、屈服强度和断后伸长率,并对接头的微观组织和断口形貌进行了观察和分析.结果表明,双轴肩FSW接头横截面形成了一组由内向外扩张“洋葱环”状的椭圆环;常规FSW焊核区与热力影响区之间组织发生明显变化;硬度的最低处为双轴肩FSW前进侧热力影响区,最高处为双轴肩FSW接头上表面焊核区;常规搅拌摩擦焊接头的综合力学性能最好,双轴肩次之;断口形貌分析表明,接头断裂模式均为韧性断裂,且常规FSW断口韧窝尺寸比双轴肩FSW接头韧窝小而深,表现出更好的塑性.  相似文献   

10.
采用搅拌摩擦焊对3 mm厚的T2紫铜和工业纯铝进行对接焊,结果表明:焊接前对T2紫铜进行退火处理,同时搅拌针相对于配合面向铝侧偏移时,可以减小搅拌针粘连问题,获得成形良好的焊接接头。搅拌区形成沿搅拌头旋转方向连续分布片层状与涡流状复杂结构。接头抗拉强度为112 MPa,为工业纯铝母材强度的86.2%左右,试样拉伸断裂位置位于搅拌区前进侧过度区域,断口SEM形貌呈现明显的脆性断裂特征;接头前进侧热影响区出现了不同程度的软化现象,焊核区最低硬度为51.02 HV,均低于两侧母材硬度。  相似文献   

11.
工艺参数对搅拌摩擦焊变形铝合金接头性能的影响   总被引:6,自引:6,他引:0       下载免费PDF全文
潘锐  王善林  李建萍  钱鲁泓 《焊接学报》2016,37(11):89-92,98
文中采用搅拌摩擦焊方法对4 mm厚的1060,2024,6061三种变形铝合金板材进行对接试验,焊后利用光学显微镜和扫描电镜分析、对比了焊接接头各区的微观组织和试样断口形貌,并测试了其拉伸性能和显微硬度.结果表明,三种材料接头焊核区的组织细小且焊核区的硬度最高,而热影响区组织粗大且硬度最低.接头的强度都随焊接速度和搅拌头旋转速度的增大呈先增大后减小的趋势,且接头最优抗拉强度与母材强度呈线性关系.拉伸试验中试样在热影响区断裂、断口呈韧窝状,为典型的韧性断裂.热影响区组织粗大和二次相偏聚是造成接头薄弱点的主要原因.  相似文献   

12.
以厚度为5 mm的铸造铝合金ZL114和变形铝合金6061为研究对象进行搅拌摩擦焊对接试验,设计正交试验研究了焊接参数对ZL114/6061异种铝合金搅拌摩擦焊接头形貌和力学性能的影响。结果表明,搅拌头转速对焊接接头强度影响最大,搅拌头行走速度次之,下压量影响最小。当搅拌头转速为1 200 r/min、行走速度为200 mm/s、下压量为0.1 mm时可获得较好焊接接头性能,接头平均抗拉强度为285 MPa,达到母材强度的89%以上,接头伸长率为9.17%,达到母材伸长率的54%以上;焊核区晶粒呈细小分布,热力影响区晶粒呈细长分布,硬度最低。焊接接头拉伸断裂形式呈现韧-脆混合断裂。  相似文献   

13.
《铸造技术》2017,(8):1987-1990
采用不同焊接速度焊接7A04铝合金板材,并对搅拌摩擦焊接头进行微观组织和力学性能分析研究。结果表明,接头焊核区由于搅拌头的搅拌作用及发生动态再结晶,形成细小等轴晶,尺寸远小于母材;机械热影响区处于搅拌头外缘,在搅拌头搅拌作用下发生明显的拉伸变形;热影响区晶粒发生明显粗化。不同焊接速度下焊缝区的硬度分布整体上呈"W"形分布,接头软化,焊缝区硬度低于母材,硬度最高值出现焊核区,最低值出现在热影响区。当旋转速度为800 r/min,焊接速度为120 mm/min时,接头成型性最佳,其抗拉强度为410 MPa,达母材强度的75%。  相似文献   

14.
通过金相组织观察、断口扫描分析、拉伸试验和显微硬度测试等分别研究了6082-T6和5083铝合金搅拌摩擦焊(FSW)接头的微观组织和力学性能.结果表明,接头断面组织可分为焊核区(WN)、热机影响区(TMAZ)、热影响区(HAZ)、母材区(BM)四个区域.焊核区为动态再结晶的细小等轴晶组织;热机影响区为回复晶粒组织,晶粒产生了较大的弯曲变形;在热影响区发生了晶粒粗化现象,晶粒形态与母材相似.两种铝合金搅拌摩擦焊接头的拉伸断口均呈韧性断裂特征,接头断裂位置为热影响区的前进侧,表明热影响区为接头最薄弱的区域.力学性能测试表明,6082和5083铝合金接头的抗拉强度分别为242 MPa和301.6 MPa,分别达到母材本身抗拉强度的76.8%和88.7%;两种接头的显微硬度分布曲线均存在一个最低值,该最低值位于前进侧的热影响区.  相似文献   

15.
对5 mm厚T2紫铜开展了搅拌摩擦焊工艺的研究,分析了焊接工艺参数对焊缝表面成形、接头宏观形貌、显微组织及力学性能的影响。结果表明,在较宽的焊接工艺参数范围内均可得到无内部缺陷的接头。接头宏观形貌由焊核区、热机影响区、热影响区和母材组成。随着搅拌头旋转速度的增加或焊接速度的降低,碗形的接头的宏观形貌轮廓逐渐模糊,焊核区的晶粒逐渐粗化,接头的抗拉强度逐渐降低。当焊接工艺参数为400 r/min,200mm/min时,接头的抗拉强度最高,达到母材的95. 9%,S线对接头拉伸性能无影响。热影响区的显微硬度值最低,与接头的断裂位置一致。  相似文献   

16.
对我国航天工业中常用的6.6 mm厚的AZ31B镁合金进行了搅拌摩擦焊试验,获得了型面良好、表面质量光滑、检测无缺陷的焊接接头。对比分析了镁合金在不同工艺参数下的焊接接头拉伸、硬度以及断裂等力学性能;同时,研究了AZ31B镁合金搅拌摩擦焊在不同区域的显微组织结构。结果表明,焊接接头抗拉强度达到250 MPa,为母材的89.3%,焊接接头硬度大于母材硬度,接头断裂位置位于前进边热力影响区附近;焊核区晶粒大小均匀,热力影响区晶粒大小不一,存在焊核区塑性流动和搅拌头的转动双重作用结构,从而论证了航天AZ31B镁合金搅拌摩擦焊的可行性。  相似文献   

17.
采用搅拌摩擦焊对2 mm厚的2195-T6铝锂合金进行焊接,利用OM,SEM,EBSD等分析技术探讨焊接速度对接头组织结构与力学性能的影响. 结果表明,搅拌头转速为800 r/min、焊接速度在120 ~ 210 mm/min范围内,焊核区晶粒均较为细小,平均晶粒尺寸约为1 μm. 随着焊接速度的提高,大角度晶界含量增大,焊核区的{110}<110>织构和{011}<100>戈斯织构消失. 接头硬度的最低值均出现在后退侧热影响区,且在焊接速度为180 mm/min时,接头的抗拉强度与断后伸长率达到最大值,最大抗拉强度为467 MPa,约为母材的86.3%,此时断后伸长率为5.0%,断裂模式为韧性断裂,但断口呈现一定的脆性断裂特征.  相似文献   

18.
铝合金浮动式双轴肩FSW接头组织性能分析   总被引:2,自引:2,他引:0       下载免费PDF全文
对12 mm厚6082-T6铝合金浮动式双轴肩搅拌摩擦焊接头微观组织及力学性能进行了分析研究.结果表明,焊核区发生了动态再结晶和沉淀相溶解,热影响区晶粒和沉淀相粗化;沿焊缝横截面硬度的分布呈高-低-高-低-高的W形分布趋势,且接头沿厚度方向上、中、下层硬度分布趋势较为一致,硬度最低值出现在热影响区;断口形貌分析表明,接头断裂模式为韧-脆混合型断裂;主轴旋转频率600 r/min,焊接速度为300 mm/min,搅拌头倾角为0°时,接头抗拉强度达到了231 MPa,可达母材的79%.  相似文献   

19.
采用不同焊接工艺参数对6 mm厚稀土Er微合金化的高Zn铝合金进行了搅拌摩擦焊试验,研究了不同焊接速度对焊缝各区域组织和力学性能的影响。结果表明:焊核区晶粒尺寸随焊接速度的增加而逐渐减小;热影响区和热机影响区交界处硬度值最低,是焊接接头的薄弱环节。焊接接头存在异常的大梯度组织变化,在三种焊接速度下获得的焊接接头强度损失均较为严重,当搅拌头转速为350 r/min、焊接速度为50 mm/min时,抗拉强度和伸长率分别为459 MPa和9.4%,伸长率比母材横向增加96%,断口分析表明为韧性断裂。  相似文献   

20.
2219铝合金搅拌摩擦焊接头晶间腐蚀分析   总被引:1,自引:0,他引:1       下载免费PDF全文
张华  庄欠玉  张贺 《焊接学报》2016,37(8):79-82
采用晶间腐蚀试验研究了2219铝合金搅拌摩擦焊接头的晶间腐蚀行为,结合接头显微组织、微观硬度、腐蚀形貌及腐蚀深度,分析母材与焊核区的差异,并对接头晶间腐蚀机理进行了初步的探讨.结果表明,焊核区为细小的等轴晶组织,且接头上表面焊核区的晶粒要大于下表面焊核区的晶粒;母材区硬度最高,下表面焊核区硬度最低;焊核区的耐蚀性优于母材,且上表面焊核区耐蚀性优于下表面焊核区,母材最大腐蚀深度为145.9 μm,上表面焊核区及下表面焊核区最大腐蚀深度为46.3 μm和84.1 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号