首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
利用Al-Si-Mg钎料实现5005铝合金与4J34可伐合金的真空钎焊,研究了接头界面结构及其形成机理,分析了钎焊温度及保温时间对接头界面结构和抗剪强度的影响。结果表明:随着钎焊温度的升高和保温时间的延长,接头的抗剪强度先升高后降低;当钎焊温度为580℃、保温时间为15 min时,接头抗剪强度达到最大值81 MPa,此时,接头的典型界面结构为4J34可伐合金/FeAl/FeAl3/FemAln+α(Al)/5005铝合金。接头的断裂形式主要受钎焊温度的影响;当钎焊温度较低时,接头断裂于铝合金侧氧化膜层及铝合金内;当温度升高至580℃时,接头断裂于FemAln+α(Al)反应层中。  相似文献   

2.
采用Ag-Cu钎料对Ti_3Al与316L不锈钢进行真空钎焊连接,通过扫描电镜、能谱分析仪和X射线衍射仪分析了接头界面结构并对其形成机理进行了分析,同时,研究了钎焊温度对接头界面组织以及抗剪强度的影响。结果表明,在固定保温时间为5 min时,接头的抗剪强度先随着钎焊温度的升高而增大,当钎焊温度为800℃时,接头抗剪强度达到最大值为343 MPa,当钎焊温度进一步升高时,接头抗剪强度会呈现降低趋势。接头的典型界面结构为Ti_3Al/Al Cu_2Ti+Cu_2Ti+Cu(s,s)+Ag(s,s)+Cu Ti+Fe_2Ti/316L不锈钢。  相似文献   

3.
利用Al-Si-Mg钎料和自制工艺罩内置Mg粉方法,实现化学镀镍Al2O3陶瓷与5A05铝合金的真空钎焊连接,并分析保温时间及连接温度对接头界面结构和抗剪强度的影响。结果表明:连接温度570℃,保温时间15min为最佳工艺参数,此时接头界面结构为Al2O3/Ni(Ⅰ区)/Al3Ni2(Ⅱ区)/Al3Ni+Mg2Si(Ⅲ区)/α(Al)+Mg2Si(Ⅳ区)/5A05,接头的抗剪强度为25MPa。随着保温时间的延长,Ni层变薄,Al3Ni2组织的变化不大,Al3Ni+Mg2Si组织逐渐变宽,且呈分散趋势;当保温时间延长到50min时,Al3Ni+Mg2Si完全变成零乱的形状、大小不一的块状分布,且靠近5A05侧的Mg2Si消失。连接温度对界面组织结构的影响与保温时间的影响相似,接头断裂形式为脆性断裂。当接头的强度较低时,断裂发生在铝合金侧的α(Al)+Mg2Si附近;当接头的强度较高时,断裂发生在镀Ni层+界面区(Ⅱ区与Ⅲ区)。  相似文献   

4.
TiAl基合金与Ni基合金钎焊连接接头界面组织及性能   总被引:1,自引:0,他引:1  
采用BNi2钎料实现了TiAl基合金与Ni基高温合金的钎焊。采用扫描电镜、能谱分析和X射线衍射等手段对钎焊接头的界面组织结构及生成相进行分析,并对接头的抗剪强度进行测试。结果表明,钎焊接头的典型界面结构为:GH99/(Ni)ss (γ)+Ni3B+CrB+富Ti-硼化物/TiNi2Al/TiNiAl+Ti3Al/TiAl;随着钎焊温度的升高或保温时间的延长,较多的B和Si元素扩散进入两侧母材,导致钎缝中硼化物数量减少,而TiAl/钎缝界面的TiNi2Al和TiNiAl+Ti3Al金属间化合物层厚度增加;当钎焊温度为1050 ℃,保温时间为5 min时,接头的抗剪强度达到最大为205 MPa,接头主要断裂于TiNiAl金属间化合物层。当钎焊温度升高或保温时间继续延长时,TiNiAl厚度显著增加,导致接头强度下降  相似文献   

5.
采用Al-Si钎料对经过Ag-Cu-Ti粉末活性金属化处理的Al2O3陶瓷与5005铝合金进行了真空钎焊,研究了钎焊接头的典型界面组织,分析了钎焊温度对接头界面结构特征及力学性能的影响. 结果表明,接头典型界面结构为5005铝合金/α-Al+θ-Al2Cu+ξ-Ag2Al/ξ-Ag2Al+θ-Al2Cu+Al3Ti/Ti3Cu3O/Al2O3陶瓷. 钎焊过程中,Al-Si钎料与活性元素Ti及铝合金母材发生冶金反应,实现对两侧母材的连接. 随着钎焊温度的升高,陶瓷侧Ti3Cu3O活化反应层的厚度逐渐变薄,溶解进钎缝中的Ag和Cu与Al反应加剧,生成ξ-Ag2Al+θ-Al2Cu金属间化合物的数量增多,铝合金的晶间渗入明显;随钎焊温度的升高,接头抗剪强度先增加后降低,当钎焊温度为610 ℃时,接头强度最高达到15 MPa.  相似文献   

6.
采用Al-Si-Mg钎料制备了表面Mo-Mn化后镀Ni的Al_2O_3陶瓷与1A95铝合金真空钎焊接头,研究了钎焊温度和保温时间对钎焊接头组织和剪切性能的影响,并分析了接头的界面微观组织及断口形貌。研究表明,最佳钎焊工艺为580℃×20 min,接头的抗剪强度达到74 MPa,此时接头界面结构为Al_2O_3/Mo-Mn/Al_3Ni/α-Al/1A95。随着钎焊温度的升高,界面处Al_3Ni化合物厚度增加;随着保温时间的延长,界面处产生了Al_(12)Mo化合物覆盖在Al_3Ni化合物上方。接头的断裂形式均为脆性断裂:当钎焊温度较低保温时间较短时,断裂主要发生在靠近铝合金与钎料层的界面处。最佳工艺条件下,断裂一部分发生在钎料和镀镍层的反应区内,一部分发生在靠近铝合金与钎料层的界面处。随着钎焊温度或保温时间进一步提高,断裂主要发生在钎料和镀镍层的反应区内。  相似文献   

7.
为研究钎焊温度对TC4/Ti60接头组织及力学性能的影响,采用纯铜箔作为中间层对TC4与Ti60合金进行接触反应钎焊,钎焊温度范围为970~1 010℃.采用SEM,EDS,XRD,拉剪试验对接头组织及力学性能进行研究.结果表明,接头的典型界面组织为TC4/α-Ti+Ti_2Cu/Ti_2Cu/Ti Cu/Ti_2Cu/α-Ti+Ti_2Cu/Ti60.随着钎焊温度的升高,基体侧的反应扩散层厚度增加,钎缝厚度及Ti-Cu金属间化合物含量逐渐减少,钎缝成分趋于均匀化.接头抗剪度随钎焊温度的升高先增加后减少,当钎焊工艺为1 000℃保温10 min时,接头抗剪强度最高为130 MPa.断口分析表明,接头断裂于钎缝与扩散反应层之间,断裂方式为准解理断裂.  相似文献   

8.
采用Ti-50Ni(at%)钎料实现了TZM合金与ZrC_p-W复合材料的真空钎焊连接,通过SEM、EDS、XRD等方法分析了接头界面的微观组织结构,研究了钎焊温度对TZM/Ti-50Ni/ZrC_p-W接头界面组织及性能的影响。结果表明:钎焊接头的典型界面结构为TZM/Ti-Mo+TiNi_3+Mo-Ti-W/Ti Ni+TiNi_3+W(s,s)+(Ti,Zr)C/ZrC_p-W。随着钎焊温度的升高,Ti-Mo固溶体层宽度逐渐增大,线状条纹增多、增宽,组织逐渐粗大,晶界变圆滑;接头的抗剪强度随钎焊温度升高先升高后降低,当钎焊温度为1340℃,保温10 min时,接头获得最大抗剪强度为146 MPa。  相似文献   

9.
李小强  娄立  屈盛官  杨超  李力 《焊接学报》2019,40(10):80-85
采用Ti-Zr-Fe-Cu-Ni-Co-Mo钎料实现了TiAl合金与GH536合金的有效钎焊连接. 运用SEM,EDS,XRD等手段对钎焊接头的界面组织进行了分析,并检测了钎焊接头的抗剪强度. 结果表明,钎焊接头的典型界面组织由TiAl合金一侧到GH536合金一侧包括Ⅰ层(Ti3Al + TiAl)、Ⅱ层(Al3NiTi2)、Ⅲ层(以AlNi2Ti为主,并含有富铬(Cr,Ni,Fe)SS、富镍(Cr,Ni,Fe)SS和(Ni)SS + TiNi3)和Ⅳ层(以富铬(Cr,Ni,Fe)SS为主,并含有富镍(Cr,Ni,Fe)SS,AlNi2Ti和(Ni)SS + TiNi3). 当钎焊时间为10 min时,在1 110 ~ 1 170 ℃的钎焊温度范围内,随着钎焊温度的升高,钎焊接头的抗剪强度先升高后降低. 钎焊温度对原子扩散和金属间化合物的形成有较大的影响,较低或较高的温度都会导致接头强度偏低. 1 150 ℃钎焊10 min获得的接头抗剪强度最高,为183 MPa,接头主要断裂在Ⅱ层.  相似文献   

10.
TiAl/Ni基合金反应钎焊接头的微观组织及剪切强度(英文)   总被引:1,自引:0,他引:1  
以Ti为中间层,对TiAl基金属间化合物与Ni基高温合金进行反应钎焊连接,研究反应钎焊接头的界面微观结构及剪切强度。通过实验发现,熔融中间层与两侧母材反应剧烈,生成连续的界面反应层。典型的界面微观结构为GH99/(Ni,Cr)ss(γ)/TiNi(β2)+TiNi2Al(τ4)+Ti2Ni(δ)/δ+Ti3Al(α2)+Al3NiTi2(τ3)/α2+τ3/TiAl。当钎焊温度为1000°C,保温时间10min时,所得接头的剪切强度最高为258MPa。进一步升高钎焊温度或延长保温时间,会引起钎缝组织中组成相粗化和脆性金属间化合物层的生成,从而导致接头剪切强度的降低。  相似文献   

11.
陶瓷/AgCuTi/不锈钢钎焊连接界面组织与结构   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Ag-Cu-Ti钎料对日用陶瓷与1Cr18Ni9Ti不锈钢进行了钎焊连接.用扫描电镜、能谱仪以及X射线衍射仪对接头的微观组织形貌、特征点的成分以及钎焊接头的物相等进行了分析研究.结果表明,接头界面处形成了多种化合物,包括TiO,TiSi_2,Ti_5Si_3和Fe_2Ti.当温度为850℃,保温时间为5 min时,接头界面结构为1Cr18Ni9Ti不锈钢/Fe_2Ti/Ag[s,s]+Cu[s,s]+Fe_2TiO+Ti_5Si_3+TiSi_2/陶瓷.当钎焊温度较高或保温时间较长时,界面反应层厚度增加,界面中基体相Ag[s,s],Cu[s,s]所占比例显著减小.
Abstract:
Domestic ceramics and lCrl8Ni9Ti stainless steel were brazed using Ag-Cu-Ti filler metal. Microstructure, the component of characteristic points and the phases of brazing joints were studied by scanning electronic microscopy ( SEM) , energy distribution spectrometer (EDS) and x-ray diffraction (XRD). The results show that several kinds of intermetallics such as TiO_2, TiO, TiSi_2 , Ti_5 Si_3 and Fe_2 Ti were formed. The interfacial structure of joints is 1Cr18Ni9Ti stainless steel/Fez Ti/Ag[ s, s] + Cu[s,s] + Fe_2Ti/TiO_2 + TiO + Ti_5Si_3 + TiSi_2/ceramics when brazing temperature and time are 850 ℃ and 5min, respectively. The depth of interfacial reactive layer increases and the ratio of matrix phase Ag [ s, s ], Cu [ s, s ] which are in the middle of interface reduces evidently as brazing temperature is very high or holding time is very long.  相似文献   

12.
文中通过热浸镀一层纯铝到不锈钢表面,再对0Cr18Ni9不锈钢和LF21铝合金采用高频感应钎焊.当热浸镀时间从10 s增加到50 s时,镀层厚度从7 μm增加到20 μm,反应层由FeAl3向Fe2Al5发生转变.在热浸镀温度为750℃,浸镀时间为10 s时,镀层成型最好,高频感应电流为270 A,加热时间30 s时,抗拉强度达到167.12 MPa,比不浸镀的接头强度高63.8%.主要是因为镀层限制钢中的Fe原子和Al-Si钎料中的Al,Si原子的相互扩散,在热浸镀不锈钢与铝合金反应中使Fe2Al5转化为Fe(Al,Si)2固溶体而未形成5-Al8Fe2Si化合物,降低了界面上硬脆化合物的含量,力学性能随之提高.  相似文献   

13.
对新型Ni-Pd-Ag-Cr-Si钎料钎焊1Cr18Ni9Ti不锈钢的接头性能进行了分析。结果表明,新型Ni-Pd-Ag-Cr-Si钎料对1Cr18Ni9Ti不锈钢有良好的润湿性;钎焊接头中,紧靠钎缝与母材界面的是与该界面平行的长条形齿状镍钯基固溶体致密组织。这种固溶体具有较高的强度和塑性,钎缝宽度为170μm时,钎缝仍具有较高的剪切强度,利于保证钎焊不锈钢产品质量不发生重大变化。  相似文献   

14.
针对钛合金与不锈钢焊接时,接头中因大量Fe-Ti等金属间化合物生成而开裂的问题,尝试了一种涂层为匹配面的钛合金与不锈钢搭接电阻钎焊工艺.通过对不同厚度热喷涂层下钎焊接头力学性能的测定,以R接头区组织成分探查,研究了涂层参与反应的钎焊接头形成机制.结果表明,当合理厚度涂层介入时,其一定透过性的组织结构,降低了母材中Fe,Cr,Ti等原子在接头区的扩散浓度,涂层中Ni与Fe,Cr,Ti等原子发生扩散反应,使Fe-Ti,Cr-Ti等脆性金属间化合物数量明显下降,从而使接头力学性能得到显著提高.在涂层与钎料共同作用下,形成的多反应区显微组织实现了钛/钢间组织和性能上的过渡,这是其接头力学性能得到改善的主要原因.  相似文献   

15.
文中采用Al/Cu/Al复合箔扩散钎焊SiCP/Al复合材料,采用SEM,EDS,XRD分析接头界面组织,研究了钎焊温度对接头界面组织及力学性能的影响,并结合Al-Cu二元相图分析接头形成机制.结果表明,固定连接压力为1 MPa,保温时间为10 min,当钎焊温度从590℃升至640℃,接头界面产物由Al2Cu+αAl共晶组织转变为断续的Al2Cu金属间化合物,Al-Cu液相向两侧母材扩散的距离增加,接头的抗剪强度呈现先增大后减小的变化趋势.当钎焊温度为620℃,保温时间为10 min,连接压力为1 MPa时,接头的抗剪强度达到最大值69 MPa.  相似文献   

16.
铝合金/Cu/不锈钢接触反应钎焊及中间层溶解行为(英文)   总被引:2,自引:0,他引:2  
以Cu作为接触反应材料连接6063铝合金与1Cr18Ni9Ti不锈钢,探讨焊接工艺参数对接头组织的影响规律,分析中间反应层Cu的溶解特性结果表明:在1Cr18Ni9Ti不锈钢一侧界面反应层由Fe2Al5、FeAl3金属间化合物和Cu-Al金属间化合物构成,与之相邻区域主要含Cu-Al金属间化合物,焊缝组织由Al-Cu共晶及大块状的Al固溶体组成;随着保温时间的延长,焊缝组织最为显著的变化是在1Cr18Ni9Ti不锈钢一侧界面的金属间化合物层厚度增加,共晶组织宽度逐渐减小;中间反应层Cu的溶解速度非常迅速,是以秒为计量单位的快速过程,厚度为10μm的Cu溶解时间仅为0.47s。  相似文献   

17.
以Ag—Cu—Ti箔状钎料对钛合金TCA和不锈钢1Cr18Ni9Ti进行了真空钎焊。采用扫描电镜、能谱分析、金相显微镜和x一射线衍射等分析测试手段对钎焊过程中所形成的反应产物和接头界面结构进行了分析。结果表明:接头界面形成了Ti(s.s)、AS(s.s)、Ti—Cu金属问化合物等反应产物。连接温度较低(920℃)时,界面结构依次为1Cr18Ni9Ti/TiCu/Ag(s.s)+少量Ti2cu/%2cu/Ti2cu+Ti(s.s)/TC4;连接温度升高(960oC)时,界面结构为1Crl8Ni9Ti/Ti:Cu/Ti:Cu+矩(s.s)/Ti2Cu/Ti2Cu+Ti(s.s)/TCA;连接温度较高(1000oC)时,界面结构为1Crl8Ni9Ti/TiCu2/TiCu/Ti2Cu/Ti:Cu+Ti(s.s)/TC4。提高钎焊温度与延长保温时间对钎焊接头界面组织结构有相似的影响,各反应相、反应层逐渐长大,金属问化合物反应相所占比例增大,而Ag(s.s)组织所占的比例变得更小,这种趋势随着焊接工艺参数的提高更加明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号