首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
基于信息粒化和支持向量机的母线等效负荷波动预测方法   总被引:2,自引:0,他引:2  
随着接入母线多源功率的不断增加,使电网更加合理安排调度计划有了较大的难度。首先,提出了构建一种母线等效负荷模型,将接入母线的不可调发电功率等效为负的负荷功率,使不可调发电功率和母线负荷功率等效为母线的等效负荷功率。然后,获取等效负荷的历史数据,作为母线等效负荷预测模型的输入。最后,基于模糊信息粒化和支持向量机进行母线等效负荷波动预测。实例验证表明,等效负荷预测值相比单独预测不可调多源功率及母线负荷之后的等效值,精确度有所提高。同时预测结果可以更加清楚地了解各母线不可调等效负荷的波动范围,有利于地调系统更好地计划可调小容量发电的出力,并为省调更合理地安排新能源消纳及全网可调发电计划提供预测基础。  相似文献   

2.
提出一种基于模糊信息粒化和最小二乘支持向量机的风电功率平均值预测和风电功率波动范围预测的联合预测模型建模方法。该方法首先对训练样本进行模糊信息粒化,根据需要提取各个窗口的有效分量信息,即各窗口的最小值、大致平均值和最大值。其次应用最小二乘支持向量机对各个分量分别建立预测模型,并使用自适应粒子群算法对各个分量模型进行优化。最后使用优化后的最小二乘支持向量机模型对风电功率平均值和风电功率波动范围进行联合预测。实例研究表明,该联合预测模型可以有效进行风电功率平均值预测和风电功率波动范围预测的联合预测,并能有效跟踪风电功率变化。  相似文献   

3.
提出一种基于模糊信息粒化和最小二乘支持向量机的风电功率平均值预测和风电功率波动范围预测的联合预测模型建模方法。该方法首先对训练样本进行模糊信息粒化,根据需要提取各个窗口的有效分量信息,即各窗口的最小值、大致平均值和最大值。其次应用最小二乘支持向量机对各个分量分别建立预测模型,并使用自适应粒子群算法对各个分量模型进行优化。最后使用优化后的最小二乘支持向量机模型对风电功率平均值和风电功率波动范围进行联合预测。实例研究表明,该联合预测模型可以有效进行风电功率平均值预测和风电功率波动范围预测的联合预测,并能有效跟踪风电功率变化。  相似文献   

4.
基于多级聚类分析和支持向量机的空间负荷预测方法   总被引:1,自引:0,他引:1  
为充分利用元胞负荷与元胞属性之间的相关联系来改善空间负荷预测效果,提出了基于多级聚类分析和支持向量机的空间负荷预测方法。首先生成元胞并建立元胞属性集合,根据各属性对元胞进行多级聚类分析,其中采用改进的k-均值算法确定聚类数目和初始聚类中心,来得到逐级细化的元胞分类;然后针对不同类型的元胞建立各自的支持向量机预测模型,同时利用遗传算法进行参数优化以提高预测模型的适应度;最后将待预测元胞的相关属性作为输入向量并代入所建立的预测模型中计算出目标年各元胞负荷最大值,从而实现空间负荷预测。工程实例分析表明了该方法的实用性和有效性。  相似文献   

5.
短期负荷预测的支持向量机方法研究   总被引:110,自引:30,他引:110  
提出了一种基于支持向量机(SVM)理论的电力系统短期负荷预测方法。该方法采用结构风险最小化原则(SRM),与采用经验风险最小化原则(ERM)的传统神经网络方法相比,具有更好的泛化性能和精度,减少了对经验的依赖。SVM算法以统计学习理论作为其理论基础,它的训练等价于解决一个二次规划问题。为了提高负荷预测精度,文中在训练数据集中采用了负荷数据和温度数据。通过和多层BP神经网络进行比较的试验,结果证明了其在短期负荷预测中的有效性。  相似文献   

6.
基于模糊支持向量机方法的短期负荷预测   总被引:2,自引:3,他引:2  
考虑气象因素对负荷的影响,提出了一种模糊支持向量机SVM(Support Vector Machine)的短期负荷预测方法。首先选取预测日前4星期中差异评价函数小于给定经验值的已知日作为相似日学习样本.然后利用隶属度函数对影响负荷特征因素向量的分量进行模糊处理,得到SVM的训练样本集.拟合负荷和影响因素之间的非线性关系。对24点每点建立一个SVM预测模型,采用改进的序列极小优化算法实现对SVM的快速训练。算例数据包括每天的气象数据和24点负荷数据.以最大相对误差和平均误差评价预测结果,表明所提方法简便快速且实用有效。  相似文献   

7.
支持向量机(简称SVM)作为新的负荷预测方法在解决小样本、非线性、过学习问题等方面有很好的优势,结合目前新疆地区负荷增长快、负荷变化非线性强的状况可以考虑将其运用至实际工作中以提高预测精度,本文采取新疆某地区实际电网数据以支持向量机预测法进行预测,通过预测结果分析证明其有效性和可行性,体现此方法的实际应用价值.  相似文献   

8.
提出一种基于模糊信息粒化和最小二乘支持向量机的风电功率波动范围组合预测建模方法。该方法首先对训练样本进行模糊信息粒化,根据需要提取各窗口的有效分量信息,即各窗口的最小值、大致平均值和最大值;其次应用最小二乘支持向量机对各分量分别建立预测模型,并使用自适应粒子群算法对各分量模型进行优化;最后使用优化后最小二乘支持向量机模型对风电功率波动范围进行预测。实例研究表明,该组合预测模型可以有效跟踪风电功率变化,对风电功率波动范围进行预测。  相似文献   

9.
支持向量机方法在电力负荷预测中的应用   总被引:4,自引:1,他引:4  
利用许昌市1999—2006年的每日电力负荷和气象数据分析了电力负荷与气象因子的相关关系。综合应用支持向量机方法,着重考虑天气因素和前期电力指标对电力负荷的影响,提出了一种有效的电力负荷短期预测方法。用1999—2005年的每日数据进行训练建模,用2006年的数据进行效果检验,研究结果表明,该方法对电力负荷变化趋势的预测效果较好。  相似文献   

10.
冯沛  段本成 《广西电力》2012,35(6):58-62
通过探讨多种确定性及非确定性负荷预测方法,将当前少有应用的支持向量机算法引入电力系统负荷预测。介绍了统计学理论,引入了根据该理论提出的支持向量机算法。对支持向量机算法原理进行了介绍,分析了该算法的本质及应用价值。采用回归问题的支持向量回归机ε-SVR算法,给出了将该算法应用于中长期负荷预测的方法。通过算例,验证了该方法的有效性。  相似文献   

11.
空间负荷预测是城网规划领域的基础工作,目前空间负荷预测大多是依靠一些历史负荷数据来进行,却忽视了地理空间信息的影响。对于同一类用地来说,由于各小区的地理空间信息不同,其发展程度存在一定的差异,进而各小区的负荷密度也不相同,如果采用统一的负荷密度进行预测,势必会带来较大的误差。因此,该文提出一种基于模糊粗糙集理论和时空信息的空间负荷预测方法。借助地理信息系统(geographic information system,GIS)获取供电小区的空间信息,分析空间信息对各类负荷分布的影响。结合模糊粗糙集理论得到每个供电小区适合其发展的统一模糊粗糙因子(因为每类小区的统一模糊粗糙因子的划定都有其自身的标准,该统一模糊粗糙因子的大小仅适于同种类型小区间的比较),从而刻画出同类负荷间负荷密度的差异。该文所提方法能够更精确地刻画负荷发展不均衡、不协调的现象,提高空间负荷预测的精度。工程实例分析表明了该方法的实用性和有效性。  相似文献   

12.
为提高电网规划阶段的空间负荷预测精度,提出了一种基于支持向量机和互联网信息修正的空间负荷预测(spatial load forecasting,SLF)方法,该方法分为3个步骤:一是基于k-均值聚类分析和支持向量回归模型得到地块负荷初始预测值;二是基于地块负荷历史数据计算负荷实际值与初始预测值之间的偏差;三是针对这些偏差,利用搜索引擎获取互联网信息,识别造成偏差的不确定事件,包括元胞中新增大负荷事件和元胞中企业营收增长率突变事件。定性分析事件对空间负荷的影响,并建立这两类事件与其造成的影响之间的分类事件影响定量模型,基于该模型对地块负荷初始预测值进行修正,得到规划区域内的地块负荷预测值。通过对北京某地区进行算例验证,结果表明该方法可以提高预测精度,可用于配电网以及能源互联网规划中的空间负荷预测。  相似文献   

13.
城网空间电力负荷预测中的负荷规律性分析   总被引:3,自引:0,他引:3  
空间电力负荷预测(spatial load forecasting,SLF)是城市电网规划必不可少的计算,其预测结果是确定所需配置供电设备容量和分布的基础,预测结果准确与否对城市电网建设及其运行的经济性和安全性都有影响。文章从城市电网的空间结构分析入手,以分层分区处理为原则,以目标层级的负荷元胞为基础,描述和刻画了该层级下空间电力负荷的规律性,着重分析了10 kV电压层级下元胞负荷的周期性、增长的非平稳性及元胞之间的负荷转移。通过实例进一步阐述了该负荷规律性分析方法,结果表明该方法能够充分合理地描述空间电力负荷的特点,客观反映SLF方法的优劣,为寻找更有效的SLF方法奠定了基础。  相似文献   

14.
根据电力负荷序列的混沌特性,提出混沌理论和蚁群优化支持向量机结合的电力系统短期负荷预测新方法,以相空间重构理论确定支持向量机的输入量个数;iJII练样本集由对应预测相点的最近邻相点集构成,且是按预测相点步进动态相轨迹生成;采用蚁群优化算法对支持向量机敏感参数进行优化,从而可增强预测模型对混沌动力学的联想和泛化推理能力,提高负荷预测的精度和提高预测稳定性.对某地区负荷系统日、周预测仿真测试,证明其可获得稳定的较高预测精度.  相似文献   

15.
传统的负荷密度指标的求取方法通常采用经验法或简单类比法,难以满足精度要求,从负荷密度与其影响因素存在着某种非线性关系的角度出发,提出了一种基于最小二乘支持向量机(least squares support vector machine,LS-SVM)的配电网空间负荷预测方法。该方法首先引入模糊C–均值算法把各类用地性质负荷聚类为几个等级,建立比较精确的负荷密度指标体系;然后根据待预测地块的规划属性,在体系中为LS-SVM预测模型选出与预测样本特征更为相似的样本进行训练,提高LS-SVM的泛化能力和预测精度;采用遗传算法对LS-SVM预测模型的参数进行自动优化,进一步提高预测模型的适应性和预测精度,实例验证了该方法的实用性和有效性。  相似文献   

16.
空间电力负荷预测方法综述与展望   总被引:7,自引:0,他引:7  
空间电力负荷预测是电力系统规划的前提与基础,特别是随着对电力系统进行精益化管理要求的提出,空间电力负荷预测问题成为重要的研究课题。为了能够充分地利用该领域内已有的研究成果,并开展更深入的探索及其有效的应用,回顾了空间电力负荷预测技术发展的历史,对现有的各种空间电力负荷预测方法、原理做了系统的归纳,提出了尚需解决的问题,对未来的研究方向作了展望。  相似文献   

17.
运用多种预测方法对中长期电力负荷预测所得结果会相差甚远,而综合各方法的组合预测能够避免其偏颇。由于在小样本和非线性拟合能力方面的优势,支持向量机方法被用于组合预测:多种传统方法预测值作为输入,拟合输入与输出之间的非线性关系,求得预测结果。针对SVM在处理回归问题时算法编程及参数寻优较为复杂的问题,提出了一种基于SVM图形用户界面(Graphical User Interface,GUI)工具箱的组合预测方法。算例分析表明,运用该方法,在预测过程中可直观、方便地应用通用软件工具包,且预测精度较高,便于推广和工程应用。  相似文献   

18.
支持向量机在短期负荷预测中的应用概况   总被引:5,自引:0,他引:5  
全面总结了支持向量机(SVM)在短期负荷预测中的应用概况,并从SVM的原理出发,对比人工神经网络方法,从本质上阐述了SVM方法在短期负荷预测中应用的优越性.同时针对SVM在应用中存在的问题,包括数据预处理、核函数构造及选取和参数优化的方法,做出分析,并归纳了现行的解决方法.从SVM算法用于负荷预测的机理及提高预测精度和...  相似文献   

19.
通过分析影响基于时序的空间负荷预测(SLF)精度的主要因素,提出一种用于识别和校正负荷转移的负荷时序消差方法.将元胞之间经常出现的非永久性负荷转移分为跨单位时间型和非跨单位时间型2种,对前一种采用改进的负荷转移耦合法实现负荷时序消差,对后一种采用基于累积负荷曲线确定元胞负荷最大值的算法实现负荷时序消差,从而降低元胞之间负荷转移对SLF精度的不利影响.通过算例验证了基于负荷时序消差的SLF效果,结果表明该方法实用、有效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号