首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
整流侧采用电网换相换流器(Line Commutated Converter,LCC),逆变侧采用模块化多电平换流器(Modular Multilevel Converter,MMC)构成的混合直流输电系统,结合了LCC、MMC的优点;同时,当MMC为半桥子模块和全桥子模块各占50%的混合型MMC时,系统具有较强的交直流故障穿越能力。针对整流侧交流系统严重故障下半桥子模块和全桥子模块电容电压不平衡的问题,提出一种改进的环流控制策略。改进的环流控制策略通过检测MMC的运行工况,调整环流控制器的参考值,从而使桥臂电流具有正负交替的特性。其次,提出基于虚拟电阻和电流指令限值的故障暂态电流抑制策略,能够抑制故障穿越期间交直流电流的振荡,确保系统安全稳定运行。基于PSCAD/EMTDC仿真平台,搭建LCC-MMC混合直流输电系统,仿真验证了所提控制方法的有效性。  相似文献   

2.
为实现基于电网换相换流器与模块化多电平换流器(LCC-MMC)的混合三端直流输电系统送端交流故障下的直流低电压穿越,提出兼顾传输容量与响应速度的自适应电压协调控制策略及有功功率分配策略。在维持故障期间功率续传的前提下,定量分析了模块化多电平换流器(MMC)的降压值以减少传输功率的绝对值损失量,并设计MMC根据本地直流电流偏差快速减投子模块总数的降压方式;考虑到半桥型MMC的调制比约束,设计正极MMC定量吸收无功功率与负极MMC动态调整交流电压参考值的换流站极间协同控制策略;同时,为抑制从站的过电流及避免送端严重交流故障时主站的潮流反转,提出各受端换流站有功功率自适应调整的控制方式。最后通过对输电系统送端交流电压跌落不同幅度时的故障穿越效果进行仿真分析,验证了所提控制策略的有效性。  相似文献   

3.
电网换相换流器和模块化多电平换流器(LCC-MMC)型混合直流输电解决了传统直流受端的换相失败问题,目前葛洲坝—上海直流系统正在进行受端柔性直流化改造的方案论证,而焦点在于送端交流系统故障引起直流电流快速下降的故障穿越问题。为此,首先根据送端交流系统故障时的系统等值电路得到其拉氏运算电路,基于回路电流法通过拉氏反变换求得直流电流的暂态过程,并分析了暂态电流的衰减分量及振荡分量。在PSCAD/EMTDC仿真平台上建立了葛洲坝—上海直流的电磁暂态仿真模型,仿真结果验证了分析的正确性。进一步地,忽略暂态电流的振荡分量,得到了直流电流及其过零时间的近似解析表达式。最后,利用解析表达式分析了交流电压跌落程度、平波电抗器和控制策略对直流电流过零时间的影响。所提方法可为LCC-MMC型混合直流输电的送端交流系统保护定值整定及平波电抗器参数的选取提供依据。  相似文献   

4.
混合直流输电系统整流侧采用电网换相换流器(line commutated converter,LCC),逆变侧采用混合型模块化多电平换流器(full half bridge modular multilevel converter,FH-MMC)。直流单极接地故障是直流输电系统主要故障类型,在发生直流侧单极接地故障时,混合直流输电需切换运行模式,LCC侧由双极运行转为单极运行,FH-MMC侧通过桥臂输出负电平电压消除交流电压直流偏置以及故障电流。通过对该运行模式下FH-MMC桥臂功率流动特性进行分析可知,上、下桥臂产生能量不平衡问题,导致故障桥臂子模块电容电压持续上升,影响开关器件的安全运行。为此,基于基频环流注入的能量平衡策略提出一种直流单极故障穿越控制策略,保证直流母线单极接地故障下正常极仍可传递一半的额定功率,实现混合直流输电不停机运行。最后,在PSCAD/EMTDC中搭建混合直流输电仿真模型,仿真结果验证了所提控制策略的有效性。  相似文献   

5.
以乌东德电站送电广东广西特高压多端柔性直流示范工程为研究对象,考虑混合三端柔性直流输电系统因受端不同位置交流故障所致的直流过电压,提出相应的故障穿越协调控制策略。在受端主站发生网侧交流瞬时故障的情形下,通过设计混合型模块化多电平电压源换流器全桥子模块自适应负投入策略,实现了利用子模块电容短时过电压储能的能力来快速补偿站间直流电压的上升;短暂时延后,送端电网换相换流器通过定量调整电流指令值策略来减小子模块的不平衡充电功率。在受端主站发生阀侧交流故障的情形下,优先利用输电健全极的功率转代裕度来消纳故障极的部分不平衡功率;同时,故障极从站跟随主站半压运行,相应的高低压阀组切换至定电流及定电压模式,最终实现抑制站间过电流及减小盈余功率。仿真结果表明,2种故障条件下,所提的协调控制策略均可较快实现故障期间的功率平衡,有效抑制仅配备稳态基本协调控制策略下系统所出现的直流过电压现象,同时也基本维持了送端的总体有功传输容量。  相似文献   

6.
为了柔性直流输电受端交流侧故障下的电网电压尽快恢复,在详细分析了传统电压裕度控制的切换过程后提出了一种改进的电压裕度控制策略,通过在跌落瞬间的积分清零及给定值调整,缩短了切换的动态过程,减小了直流电压的冲击。同时设计了故障期间的有功和无功协调控制,根据电网跌落深度发出相应的无功电流,剩余的电流容量用于维持故障前的有功水平。最后在PSCAD/EMTDC中搭建了柔性直流输电系统的仿真模型,验证了本文所设计控制策略的有效性。  相似文献   

7.
整流侧为LCC、逆变侧为MMC的LCC-MMC特高压混合直流输电系统的换流站由高低压阀组串联形成,当系统采用“LCC定电流控制/MMC定电压控制”和“LCC定电压控制/MMC定功率控制”两种控制策略时,分别存在整流站LCC和逆变站MMC的高低压阀组直流电压和有功功率不平衡的现象。提出了高低压阀组之间存在的不平衡电流和阀组电压未直接受控是导致阀组间直流电压不平衡的原因,并分析了不平衡现象的机理过程。对此提出了基于高低压阀组实际电压与额定电压偏差修正控制目标的均压控制策略,使得阀组间直流电压能够得到均衡控制。最后在PSCAD/EMTDC平台上对提出的均压控制策略进行了有效性验证。  相似文献   

8.
针对整流站采用电网换相型换流器(LCC)、逆变站采用并联两端模块化多电平换流器(MMC)的三端混合直流输电系统,重点研究了整流站交流侧故障导致直流输送功率减小或中断的问题,并提出了一种整流站交流故障穿越协调控制策略。首先,建立了混合直流系统中不同类型换流器的数学模型并分析了其交流故障特征;其次,针对不同的系统运行方式及故障时直流电压降低、直流侧含有二倍频分量的故障特征,提出了整流站最小触发角控制与逆变站最大调制比控制的站间协调策略;再次,通过改进原有100 Hz保护定值,实现了控制模式可自主切换;最后,在PSCAD/EM TDC中建立了混合直流输电系统的模型,对该系统在不同工况下的控制特性进行了仿真分析。结果表明:所提控制策略在整流站交流故障情况下可相应提高直流系统的输送功率,降低整流侧发生交流短路故障时引起功率输送中断的概率。  相似文献   

9.
针对多端柔性直流输电系统交流侧发生故障,直流系统与电网公共连接点电压也随之跌落的问题,文中提出了一种交流故障穿越技术来维持公共连接点电压稳定。根据公共连接点电压跌落程度增发相应的无功功率从而维持公共连接点的电压稳定,保证系统的有功功率传输。当公共连接点电压跌落程度较大时,增发的无功功率导致交流系统过电流,提出通过降低故障端的有功功率参考值,从而减小交流侧电流幅值,避免过电流的产生。同时,针对有功功率的减小将使系统的不平衡功率进一步增大导致直流电压发生较大波动的现象,通过定直流电压换流站根据直流电压的变化来消纳系统的不平衡功率,从而达到维持多端柔性直流输电系统直流电压稳定的目的。  相似文献   

10.
王渝红  陈诗昱  曾琦  罗兰  叶葳 《高电压技术》2021,47(5):1658-1665
对于接入无源网络的MMC-HVDC系统,送端交流发生故障时功率传输平衡会被打破,直流电压迅速下跌,威胁换流站安全运行.首先分析了无源网络负荷特性及送端交流故障下换流站各电气量变化机理,基于与无源网络相连逆变站的常规控制,提出了一种根据直流电压变化产生d轴电压修正指令值的故障穿越附加控制.该控制策略核心思想为在送端有功功...  相似文献   

11.
整流侧采用LCC、逆变侧采用MMC与LCC串联的混合级联型直流输电系统可实现直流故障穿越、换相失败抑制和大容量功率传输。建立混合级联型直流输电系统模型,设计系统整体控制策略,并利用PSCAD/EMTDC仿真软件研究系统功率阶跃时的动态特性,验证控制策略的有效性。对系统的直流故障特性进行仿真分析,发现若不采取合适措施,系统发生直流故障时会出现由于并联MMC之间的电流分配不均衡而产生过电流现象以及故障清除后系统恢复过程波动大的问题,为此,提出系统故障期间及故障清除后的恢复控制策略,仿真验证了该控制策略的有效性。  相似文献   

12.
柔性直流输电的故障穿越是电网安全稳定运行的重要内容,特别是交流侧低压故障时产生的较大短路电流对换流器件的危害一直是研究热点.针对1个风电场经交直流并联输电的系统,当直流输电的逆变端交流侧发生严重短路故障时,提出通过控制换流站的内环电流控制器的输入电流指令的限幅环节来抑制换流器出口的过电流,即低压故障时切换到小一级的限幅器限值,同时为了阻止从整流站而来的功率积累过剩,造成直流电压上升,设计了整流站运行方式自动切换控制器,使整流站输电功率减小,将功率转移到交流线路,以稳定直流电压.最后通过仿真验证,证明提出的方法在抑制交流短路大电流、稳定直流电压方面效果显著.  相似文献   

13.
针对海上风电经柔性直流联网系统受端交流故障导致的直流过电压问题,提出了直流过电压协调抑制策略。针对单极直流过电压,通过合理切换双极MMC控制模式,可使故障极MMC主动维持直流电压稳定。并设计了风电场精确减载控制策略,以保证非故障极MMC满载运行,从而降低单极MMC退出对受端交流电网的影响。针对双极直流过电压,设计了一种基于本地直流电压测量信息的风电场减载控制策略,即根据直流电压变化率及偏差量主动降低风电场有功出力,以抑制直流电压上升率及幅值。并提出了附加桨距角控制及其参数选取原则,使风电场与各换流站内电容共同维持直流电压稳定,提高系统故障穿越能力。最后,基于RTLAB OP5600实时数字仿真平台搭建了系统仿真模型。不同受端交流故障情况下的仿真结果表明,所提直流过电压协调抑制策略可保证直流电压在安全运行范围,维持系统安全稳定运行。  相似文献   

14.
混合高压直流输电(high voltage direct current transmission,HVDC)结合了常规直流输电和柔性直流输电的优点,是高压输电的重点发展方向。本文介绍了三者在控制策略方面的差异及存在的问题,研究了电流源型换流器(line commutation converter,LCC)-模块化多电平换流器(modular multilevel converter,MMC)型混合直流系统的多段式启动控制策略,半桥MMC结合阻流二极管的直流线路故障限制措施,合理设置控制器参数提升交流系统故障穿越能力,检验了交流电压长期跌落系统的应对能力,并分析了控制系统稳定性。采用PSCAD/EMTDC软件搭建仿真模型,验证了控制策略的有效性,为实际工程提供参考。  相似文献   

15.
该文从能量传递角度对柔性直流输电系统故障进行解析,提出了基于换流阀桥臂功率的柔性直流输电系统故障解析方法与新思路,为柔性直流输电系统交流故障、直流线路故障分析及瞬时能量平衡控制提供了解析基础和实用工具。首先,建立了交流系统故障等效电路,利用对称分量法推导在交流单相故障、双相短路故障以及三相短路故障下桥臂功率解析表达式,分析了交流故障下桥臂功率的变化特征;继而,从能量传递角度出发,建立了直流故障等效电路,推导了直流线路故障下桥臂功率解析表达式,分析了直流故障下桥臂功率的变化特征;最后,在PSCAD/EMTDC仿真平台搭建了柔性直流输电系统,把解析结果与仿真结果进行了对比,验证了该文所提解析方法的准确性。  相似文献   

16.
将常规两端直流输电系统逆变站的电网换相换流器(LCC) 替换为模块化多电平换流器(MMC)所构成的混合直流输电系统,可结合两种换流器的优点而具有广阔的应用前景。在研究其基本稳态控制特性的基础上,重点分析了交流电网不对称故障引起的直流输送功率下降及中断问题。通过分析混合直流系统的交流故障特征,发现交流不对称故障发生在整流侧时易引起直流电压下降甚至输送功率的中断,发生在逆变侧时易引起直流系统电压异常。鉴于此,提出了基于MMC典型控制的附加直流电压控制策略,在其调制范围内通过降低故障时逆变侧的参考直流电压以提高直流系统的输送能力。若检测到本站直流电压的交流分量大小超过限定值,则附加控制策略自动投入,无需依靠换流站间的通信。最后,通过PSCAD/EMTDC电磁暂态仿真验证了所提控制策略的可行性。  相似文献   

17.
混合直流输电系统将LCC-HVDC和VSC-HVDC进行优势互补,其发展面临的一个问题是:当送端交流系统发生不对称故障时,LCC-MMC混合直流输电系统将面临输送功率跌落甚至中断和直流侧二倍频波动的问题。首先阐述了LCC-MMC-HVDC的拓扑结构、数学模型和基本控制策略,在分析系统在送端交流不对称故障情况下暂态特性的基础上,提出集功率续传和二倍频波动抑制为一体的穿越控制策略:基于主动降压控制的功率续传策略通过改变逆变侧MMC运行点减小输送功率跌落幅度;三次谐波注入法增大了逆变侧直流电压的可调节范围;直流电压波动抑制策略中,逆变侧直流电压作为唯一控制变量,有效降低送端交流系统负序分量对系统逆变器及受端系统造成的影响。最后,在PSCAD/EMTDC中建立仿真模型,算例仿真结果验证了所提出穿越控制策略的有效性。  相似文献   

18.
送端采用电网换相换流器(LCC)、受端采用全半桥子模块混合型模块化多电平变流器(FHMMC)的LCC-FHMMC混合直流输电系统,当受端交流系统发生故障时,受端交流电压跌落,受端功率传输受阻,盈余的功率导致子模块电容过电压,甚至可能造成设备的严重损坏。为此,提出了一种基于FHMMC直流电压降压运行的受端交流系统故障穿越控制策略,使其直流电压始终低于逆变侧交流母线的电压有效值。同时,整流侧LCC保持常规的定直流电流控制,保证逆变侧的直流电流在额定值附近运行,从而实现了进入直流系统的有功功率与逆变器向受端交流系统输出的有功功率之间的平衡。最后在PSCAD/EMTDC仿真平台上对LCC-FHMMC混合直流输电系统受端交流系统发生的对称故障和不对称故障分别进行了仿真分析,仿真结果验证了所提控制策略能够快速有效地穿越受端交流系统故障,并抑制子模块电容过电压。  相似文献   

19.
对于大规模海上风电场经MMC型柔性直流输电并网系统,在陆上侧交流故障穿越过程中,由于卸荷电路是在直流电压达到一定基准电压时才开始工作,导致陆上侧换流器子模块电压存在过大的冲击,有损坏功率元器件的风险.为解决该暂态过程中子模块电容电压过高的问题,分析了模块化卸荷电路的拓扑结构与控制方法,并根据交流故障期间的系统特性对控制...  相似文献   

20.
对于大规模新能源特高压直流外送系统,受端电网故障可能导致送端电网电压剧烈变化,严重威胁送端电网的安全稳定运行,因此送端电网暂态电压是直流输电系统适应性的重要考虑因素。混合直流输电结合了常规直流和柔性直流的优势。针对大规模新能源混合直流外送应用场景,首先介绍了两端混合直流输电系统典型拓扑,建立了相应数学模型,阐述了基本控制结构。然后分析了当受端交流电网发生短路故障,采用不同直流输电拓扑方案时送端电网的交流暂态电压特性。最后在PSCAD/EMTDC搭建了不同混合直流输电系统仿真模型,验证了上述分析的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号