首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
介绍了纳米微粒复合镀层的制备方法。综述了高显微硬度复合镀层、耐磨性复合镀层、耐蚀性复合镀层以及其它特殊功能复合镀层的发展现状及应用前景,总结了目前纳米微粒复合镀技术存在的问题,并且就其以后的研究发展进行了展望。  相似文献   

2.
纳米微粒Ni-ZrO2复合镀层电镀液的制备   总被引:5,自引:0,他引:5  
选用ZrO2纳米粉,分别采用调节pH值、加入非离子型表面活性剂和离子型复杂大分子表面活性剂制备纳米微粒Ni—ZrO2复合镀层电镀液。研究发现在pH=3时,通过加入一定量的离子型复杂大分子表面活性剂可以得到高分散、高稳定的复合电镀液。  相似文献   

3.
化学镀(Ni-P)-WC纳米微粒复合镀层的研究   总被引:3,自引:0,他引:3  
采用化学镀的方法制备(Ni-P)-WC纳米微粒复合镀层,研究了镀液中WC纳米微粒的添加量对镀层中微粒含量的影响,通过扫描电镜观察了(Ni-P)-WC纳米微粒复合镀层的表面形貌。研究发现,纳米微粒镀层的硬度随着镀层中WC纳米微粒含量的增加而提高。通过测量(Ni-P)-WC纳米微粒复合镀层在NaCl溶液中的开路电位曲线和电化学阻抗谱,发现其耐蚀性能要优于合金镀层。  相似文献   

4.
以铁片作为基材,采用电镀工艺制备Ni-ZrO2纳米复合镀层。研究了温度、pH值、时间及ZrO2的质量浓度对复合镀层性能的影响。通过实验得出最佳的工艺参数为:ZrO21.5g/L,pH值4~5,50℃,60min。采用扫描电子显微镜观察复合镀层的微观形貌,并通过XRD分析其相组织成分。结果表明:复合镀层表面光亮,微粒均匀、细小;其相组织成分主要为Ni,ZrO2和Ni-ZrO2。  相似文献   

5.
复合刷镀纳米Ni-ZrO2高温耐磨性的研究   总被引:23,自引:0,他引:23  
复合刷镀纳米Ni-ZrO2镀层具有优良的高温耐磨性,常用于设备在高温下磨损后的修复处理。提出了一种纳米Ni-ZrO2复合刷镀工艺,研究了镀液中纳米ZrO2含量度怪中的纳米ZrO2粒子复合量的影响,时效热处理与镀层硬度的关系。镀层中的ZrO2粒子复合量随镀液中ZrO2含量的增大而增大,时效热处理能明显提高镀层的硬度,经400℃时效热自理后,硬度达最大,纳米Ni-ZrO2复合镀层的高温耐磨性是基材(4  相似文献   

6.
采用脉冲电源,在铜表面制备了复合镀层,研究了占空比、镀液中ZrO2纳米微粒添加量和脉冲频率对复合镀层的硬度、沉积速率和耐蚀性的影响。结果表明,随脉冲占空比的增加,镀层硬度、沉积速率和耐蚀性能均呈现先增大后减小的趋势;ZrO2纳米微粒的增加使镀层硬度增加,而沉积速率和耐蚀性能为先增大后减小;随脉冲频率的增加,镀层硬度、沉积速率及耐蚀性能均增加。最佳工艺参数应控制占空比为50%、ZrO2纳米微粒质量浓度9g/L、脉冲频率2000Hz。  相似文献   

7.
Ni-SiO2纳米微粒复合镀层的电沉积及其耐蚀性研究   总被引:2,自引:1,他引:2  
卜路霞  石军  朱华玲  尉震 《电镀与精饰》2011,33(6):13-15,19
采用控电流电沉积技术以铜为基体制备了Ni-SiO2纳米微粒复合镀层.通过改变镀液中SiO2纳米微粒的质量浓度,考察了其对镀层中SiO2微粒的质量分数、电沉积速率及镀层耐蚀性能的影响,对纯镍镀层与Ni-SiO2纳米微粒复合镀层的耐蚀性进行了比较.研究了阴极电流密度对复合镀层耐蚀性能的影响,并采用扫描电子显微镜对镀层形貌进...  相似文献   

8.
以纳米SiO2微粒为增强相,采用复合电镀方法制备出纳米微粒增强铜基复合镀层。考察了机械搅拌速率对Cu-纳米SiO2复合镀层形貌、组织结构、显微硬度和抗拉强度的影响。结果表明:机械搅拌速率对Cu-纳米SiO2复合镀层形貌、显微硬度和抗拉强度的影响较明显,但对择优取向基本无影响;当机械搅拌速率为6r/s时,Cu-纳米SiO2复合镀层的形貌质量及性能较好。机械搅拌速率通过影响纳米微粒的复合量及其发挥的强化作用,进而影响纳米微粒增强铜基复合镀层的形貌与性能。  相似文献   

9.
(Ni-P)-WC纳米微粒复合电镀的研究   总被引:9,自引:2,他引:7  
研究了WC纳米微粒质量浓度、阴极电流密度、pH值、温度、搅拌方式等工艺参数对(Ni-P)-WC纳米微粒复合镀层沉积速度的影响,并通过正交试验,确定了复合电镀的最佳工艺参数。对镀层的表面形貌、成分及不同热处理条件下的硬度进行了观察与测定,实验结果表明,镀层表面均匀,有质量分数为2.0%~3.5%的WC纳米微粒的镀层;热处理后硬度可达1240HV。  相似文献   

10.
电沉积方法对Ni-SiC纳米微粒复合镀层结构与性能的影响   总被引:2,自引:0,他引:2  
分别采用磁力搅拌-直流电沉积法、超声波搅拌-直流电沉积法和超声波搅拌-脉冲电流沉积法制备Ni-SiC纳米微粒复合镀层,并探讨电沉积方法对复合镀层组织结构、显微硬度、耐磨性及耐蚀性的影响。结果表明:超声波搅拌能引发扰动搅拌和击碎分散等综合效应,对共沉积过程起到积极促进作用,明显改善复合镀层的形貌组织,提高硬度、耐磨性和耐蚀性;并且进一步替代加载脉冲电流后,脉冲电流和超声波的作用叠加,使电沉积制备的复合镀层表面更平整,结构更致密,硬度更高,耐磨性和耐蚀性也更好。  相似文献   

11.
Ni-ZrO2复合镀层形成过程的研究   总被引:2,自引:0,他引:2  
采用复合电沉积技术制备出了Ni-ZrO2复合镀层,并利用正交设计对影响复合电沉积过程的有关因素进行了系统研究,镀液中ZrO2微粒表面荷电状况的分析表明,ZrO2微粒表面由于吸附子溶液中的Ni^2+而荷正电。  相似文献   

12.
为了改进钢材表面性能,采用复合化学镀技术制备( Ni-P) -Al2O3纳米微粒复合镀层,由于纳米微粒独特的物理化学特性致使使得到的复合镀层具有多种优良性能.通过Ni-P合金镀层、(Ni-P) -Al2O3纳米微粒复合镀层和热处理后的(Ni-P) -Al2O3纳米微粒复合镀层硬度和耐磨性能测试,得出(Ni-P)-Al2...  相似文献   

13.
在硫酸介质中,T i4 与H2O2生成桔黄色络合物,选出最佳测定波长为400 nm;研究了酸度、显色剂用量、显色时间及共存离子对测定结果的影响。结果表明,钛在0~10.5μg/mL范围内遵守朗伯比尔定律,其表观摩尔吸光系数为1.73×103L/(m o l.cm)。此方法简便、准确,用于锌基T iO2纳米微粒复合镀层中T iO2共析量的测定是可行的。  相似文献   

14.
涤纶织物化学复合镀(Ni—P)-SnO2纳米微粒复合镀层   总被引:5,自引:1,他引:4  
采用化学镀技术,实现了涤纶织物表面(Ni-P)-SnO2纳米微粒复合镀,借助扫描电镜、X-射线能谱仪、X-射线衍射分析仪和热质量分析仪对镀层表面形貌、成分以及热性能进行了分析,并对(Ni-P)-SnO2复合镀层的电磁波屏蔽和耐磨性能进行了测试。结果表明,经过(Ni-P)-SnO2纳米微粒复合镀之后,涤纶织物的起始热分解温度有所下降。镀层的均匀性和致密性对电磁波屏蔽性能影响显著。SnO2纳米颗粒对镀层表面起到了很好的增强改性作用,但由于镀层和纤维表面的结合力变差,因此织物耐磨性反而下降。  相似文献   

15.
采用复合电沉积制备Ni-ZrO2复合层。采用X-射线衍射检测ZrO2的加入对镍镀层结构的影响,如衍射峰的强度、金属电沉积时晶粒的择优取向。测试表明,Ni和ZrO2各自在特定的角度分别出现其独特的衍射特征峰,互不干扰,镀层中ZrO2含量增高,衍射强度变强。ZrO2在镀层的掺杂,镀层的晶粒尺寸由29.29 nm降至21.78 nm,镀层晶粒细化。  相似文献   

16.
(Ni-Fe)-ZrO2复合镀层的制备及性能研究   总被引:1,自引:0,他引:1  
采用电沉积的方法在硫酸盐溶液中制备了(Ni-Fe)-ZrO2复合镀层。讨论了ZrO2微粒含量对复合镀层硬度的影响规律,对镀层物理化学性能进行了表征。结果表明:当ZrO2质量浓度为8 g/L时镀层的硬度最高,复合镀层的耐蚀性明显提高,表面形貌测试明显看出有ZrO2微粒沉积在镀层中。  相似文献   

17.
为了进一步提高Ni-W-P合金镀层的硬度和耐蚀性,用脉冲电沉积法制备了(Ni-W-P)-TiO2复合镀层,并研究了镀液中TiO2加入量对镀层硬度和表面形貌的影响,且通过极化曲线和电化学阻抗谱研究了镀层在3.5%NaCl溶液中的耐蚀性能。结果表明,(Ni-W-P)-TiO2复合镀层的性能优于Ni-W-P镀层,而当镀液中TiO2质量浓度为6g/L时,复合镀层的硬度较高,表面形貌及耐蚀性能较优。自腐蚀电位较正,腐蚀电流密度较小,极化电阻较大,其交流阻抗谱对应的电阻值也较大。  相似文献   

18.
Ni-ZrO2纳米复合电铸层耐蚀性的研究   总被引:5,自引:0,他引:5  
用静态浸泡实验法研究了镍镀层和Ni-ZrO2纳米复合电铸层在质量分数分别为10% HCl溶液和10% H2SO4溶液中的耐蚀性.用SEM观察了各种样品腐蚀后的表面形貌,分析了纳米ZrO2微粒复合量对复合电铸层耐蚀性的影响,同时对纳米复合电铸层的腐蚀机理进行了初步探讨.结果表明,脉冲纳米复合电铸层的耐蚀性明显优于相同条件下制备的镍镀层,镀液中纳米ZrO2悬浮量对提高纳米复合电铸层耐蚀性有一定程度的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号