首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
《Composites Part B》2002,33(4):263-277
Since the discovery of carbon nanotubes at the beginning of the last decade, extensive research related to the nanotubes in the fields of chemistry, physics, materials science and engineering, and electrical and electronic engineering has been found increasingly. The nanotubes, having an extreme small physical size (diameter ≈1 nm) and many unique mechanical and electrical properties depending on its hexagonal lattice arrangement and chiral vector have been appreciated as ideal fibres for nanocomposite structures. It has been reported that the nanotubes own a remarkable mechanical properties with theoretical Young's modulus and tensile strength as high as 1 TPa and 200 GPa, respectively. Since the nanotubes are highly chemical insert and able to sustain a high strain (10–30%) without breakage, it could be foreseen that nanotube-related structures could be designed for nanoinstrument to create ultra-small electronic circuits and used as strong, light and high toughness fibres for nanocomposite structures. In this paper, recent researches and applications on carbon nanotubes and nanotube composites are reviewed. The interfacial bonding properties, mechanical performance and reliability of nanotube/polymer composites will be discussed.  相似文献   

2.
Giusca CE  Tison Y  Silva SR 《Nano letters》2008,8(10):3350-3356
The atomic and electronic structure of a twisted and collapsed double-walled carbon nanotube was characterized using scanning tunneling microscopy and spectroscopy. It was found that the deformation opens an electronic band gap in an otherwise metallic nanotube, which has major ramifications on the use of carbon nanotubes for electronic applications. Fundamentally, the importance of the intershell interaction in this double-walled carbon nanotube points to the potential of a reversible metal-semiconductor junction, which can have device applications, as well as a caution in the design of semiconductor components based on carbon nanotubes. Lattice registry effects between the two neighboring walls evidenced by atomically resolved images confirm earlier first principle calculations indicating that the helicity influences the collapsed structure and show excellent agreement with the predicted twisted-collapse mode.  相似文献   

3.
Understanding and controlling the chemical reactivity of carbon nanotubes (CNTs) is a fundamental requisite to prepare novel nanoscopic structures with practical uses in materials applications. Here, we present a comprehensive microscopic and spectroscopic characterization of carbon nanotubes which have been chemically modified. Specifically, scanning tunneling microscopy (STM) investigations of short-oxidized single-walled carbon nanotubes (SWNTs) functionalized with aliphatic chains via amide reaction reveal the presence of bright lumps both on the sidewalls and at the tips. The functionalization pattern is consistent with the oxidation reaction which mainly occurs at the nanotube tips. Thermogravimetric analysis (TGA), steady-state electronic absorption (UV-vis-NIR), and Raman spectroscopic studies confirm the STM observations.  相似文献   

4.
Separation of single-walled carbon nanotubes (SWNTs), according to their electronic characteristics, is essential to the development of molecular electronics, including field-effect transistors. Recent efforts by many groups have used non-covalent and covalent sidewall chemistry to probe differential reactivity in metallic and semiconducting nanotubes. These chemically based methods may more easily effect the bulk separation of tubes, as compared with physical techniques associated with (i) alternating current dielectrophoresis as well as (ii) the current-induced oxidation of metallic nanotubes, that have recently been reported as alternative methods of achieving chiral separations of nanotubes. Exploration of these types of reactions is critical for the development of interesting chemical and physical properties at the interface between molecules and materials as well as for establishing protocols for the selective functionalization of nanotubes.  相似文献   

5.
Nanoparticles that possess a single covalent tether to either another particle or a surface play an increasingly important role in nanotechnology, serving as a foundation for aggregation-based plasmonic sensors, chemically assembled framework structures, and scanning probe tips. Using a theoretical approach, we explore the reaction conditions necessary to maximize singular tethering for several cases of homogeneously dispersed nanoparticles, with a particular focus on single-walled carbon nanotubes. In the limit of particles of monodisperse size and equal site reactivity, the number of tethers versus the reaction conversion is statistically described by the well-known binomial distribution, with a variance that is minimal for the single tether case. However, solutions of nanoparticles often deviate from this ideal, and reaction events can introduce steric hindrance to neighboring sites or alter particle electronic properties, both of which can influence local reactivity. In order to study these cases we use the electron transfer reactions of single-walled carbon nanotubes. We find that the distribution in the number of monofunctional tubes, as a function of conversion, is largely dependent on the distribution of nanotube rate constants, and therefore tube chiralities, in the initial solution. As a contemporary example, we examine the implications of this result on the metallic-semiconductor separation of carbon nanotubes using electron transfer chemistry.  相似文献   

6.
Manipulation and control of matter at the nanoscale and atomic scale levels are crucial for the success of nanoscale sensors and actuators. The ability to control and synthesize multilayer structures using carbon nanotubes that will enable the building of electronic devices within a nanotube is still in its infancy. In this paper, we present results on selective electric field-assisted deposition of metals on carbon nanotubes realizing metallic nanowire structures. Silver and platinum nanowires have been fabricated using this approach for their applications in chemical sensing as catalytic materials to sniff toxic agents and in the area of biomedical nanotechnology for construction of artificial muscles. Electric field-assisted deposition allows the deposition of metals with a high degree of selectivity on carbon nanotubes by manipulating the charges on the surface of the nanotubes and forming electrostatic double-layer supercapacitors. Deposition of metals primarily occurred due to electrochemical reduction, electrophoresis, and electro-osmosis inside the walls of the nanotube. SEM and TEM investigations revealed silver and platinum nanowires between 10 nm and 100 nm in diameter. The present technique is versatile and enables the fabrication of a host of different types of metallic and semiconducting nanowires using carbon nanotube templates for nanoelectronics and a myriad of sensor applications.  相似文献   

7.
Biosensing applications of single-walled carbon nanotubes have been demonstrated in solid-state device structures. Bioanalyte sensing schemes based on coupling of reversible nanotube fluorescence quenching to redox reactions paired to enzymatic peroxide generation have also been pursued. Here we show a new approach to highly sensitive nanotube-based optical sensing. Single-walled carbon nanotubes interacting with dye-ligand conjugates--a redox-active dye molecule that is covalently bound to a biological receptor ligand (such as biotin in this case)--showed fluorescence quenching. Further interaction between the receptor ligand on the conjugates and target analytes (avidin in this case) induced the recovery of the quenched fluorescence, forming the basis of the sensing scheme. Nanomolar sensitivity was attained with high specificity for the target analyte. This is a versatile approach because a wide range of conjugation possibilities exists between the potential receptors and redox quenchers.  相似文献   

8.
Covalently functionalized, semiconducting double‐walled carbon nanotubes exhibit remarkable properties and can outperform their single‐walled carbon nanotube counterparts. In order to harness their potential for electronic applications, metallic double‐walled carbon nanotubes must be separated from the semiconductors. However, the inner wall is inaccessible to current separation techniques which rely on the surface properties. Here, the first approach to address this challenge through electrical breakdown of metallic double‐walled carbon nanotubes, both inner and outer walls, within networks of mixed electronic types is described. The intact semiconductors demonstrate a ~62% retention of the ON‐state conductance in thin film transistors in response to covalent functionalization. The selective elimination of the metallic pathways improves the ON/OFF ratio, by more than 360 times, to as high as 40 700, while simultaneously retaining high ON‐state conductance.  相似文献   

9.
A first-principles study of single-walled carbon nanotubes with bamboo-shape (BS) and pentagon-pentagon fusion defects was conducted. Sharp resonances occur on the BS-nanotubes as strong density of electronic states (DOS) localized at carbon atoms adjacent to the partitions, while at the partition the localized DOS was greatly depleted. A strong defect state at -0.1 eV below the Fermi level was generated and the band gap was narrowed for BS-(10, 0) nanotube. Sharp resonant states are observed in the valence and conduction bands of BS-(12, 0) nanotube. The resonant states are attributed to the pentagon defects as exemplified by the study of a (5, 5) nanotube with pentagon-pentagon fusion ring. The high chemical reactivity of the topological defects of the BS-nanotubes is correlated to the presence of localized resonant states.  相似文献   

10.
Many potential applications of carbon nanotubes are expected to benefit from the availability of single-walled carbon nanotube materials enriched in metallic species, and specifically armchair nanotubes. The present work focuses on the modification of the pulsed laser vaporization (PLV) technique to selectively produce certain carbon nanotube structures. Nanotube nuclei were “warmed-up” with an additional laser pulse, timed to coincide approximately with the nucleation event. The effect of the second laser on the carbon vapor temperature was studied by emission spectroscopy. Nanotube type populations with and without warm-up were compared by means of absorption, photoluminescence, and Raman spectroscopy. It was found that the warm-up of nanotube nuclei with a laser pulse has a noticeable, albeit small, effect on the nanotube population. The intensity of spectral features associated with (9,7) nanotube and its large chiral angle neighbors increased, while small chiral angle nanotubes decreased, with exception of the (15,0) tube. This experiment demonstrates that nanotube population during PLV synthesis can be manipulated in a controlled fashion.   相似文献   

11.
Carbon nanotube-based sensors   总被引:1,自引:0,他引:1  
  相似文献   

12.
We present the improvement of carbon nanotube field effects transistors (CNTFETs) performances by chemical tuning of the nanotube/substrate and nanotube/electrode interfaces. Our work is based on a method of selective placement of individual single walled carbon nanotubes (SWNTs) by patterned aminosilane monolayer and its use for the fabrication of self-assembled nanotube transistors. This method brings a relevant solution to the problem of systematic connection of self-organized nanotubes. The aminosilane monolayer reactivity can be used to improve carrier injection and doping level of the SWNT. We show that the Schottky barrier height at the nanotube/metal interface can be diminished in a continuous fashion down to an almost ohmic contact through these chemical treatments. Moreover, sensitivity to 20 ppb of triethylamine is demonstrated for self-assembled CNTFETs, thus opening new prospects for gas sensors taking advantages of the chemical functionality of the aminosilane used for assembling the CNTFETs.  相似文献   

13.
Alignment of densely packed single-walled carbon nanotubes (SWNTs) largely preserves the extraordinary electronic properties of individual SWNTs in the alignment direction, while in transverse direction the films are very resistive due to large energy barriers for tunneling between adjacent SWNTs. We demonstrate that chromium atoms inserted between the sidewalls of parallel SWNTs effectively coordinate to the benzene rings of the nanotubes via hexahapto bonds that preserve the nanotube-conjugated electronic structure and serve as a conduit for electron transfer. The atomically interconnected aligned SWNTs exhibit enhanced transverse conductivity, which increases by ~2100% as a result of the photoactivated organometallic functionalization with Cr. The hexahapto mode of bonding the graphitic surfaces of carbon nanotubes with transition metal atoms offers an attractive route to the reversible chemical engineering of the transport properties of aligned carbon nanotube thin films. We demonstrate that a device fabricated with aligned SWNTs can be reversibly switched between a state of high electrical conductivity (ON) by light and low electrical conductivity (OFF) by applied potential. This study provides a route to the design of novel nanomaterials for applications in electrical atomic switches, optoelectronic and spintronic devices.  相似文献   

14.
We have demonstrated near-edge X-ray absorption fine structure (NEXAFS) spectroscopy as a particularly useful and effective technique for simultaneously probing the surface chemistry, surface molecular orientation, degree of order, and electronic structure of carbon nanotubes and related nanomaterials. Specifically, we employ NEXAFS in the study of single-walled carbon nanotube and multi-walled carbon nanotube powders, films, and arrays, as well as of boron nitride nanotubes. We have focused on the advantages of NEXAFS as an exciting, complementary tool to conventional microscopy and spectroscopy for providing chemical and structural information about nanoscale samples.  相似文献   

15.
The chirality of single-walled carbon nanotubes affects many of their physical and electronic properties. Current production methods result in nanotubes of mixed chiralities, so facile extraction of specific chiralities of single-walled carbon nanotubes is an important step in their effective utilization. Here we show that the flavin mononucleotide, a common redox cofactor, wraps around single-walled carbon nanotubes in a helical pattern that imparts efficient individualization and chirality selection. The cooperative hydrogen bonding between adjacent flavin moieties results in the formation of a helical ribbon, which organizes around single-walled carbon nanotubes through concentric pi-pi interactions between the flavin mononucleotide and the underlying graphene wall. The strength of the helical flavin mononucleotide assembly is strongly dependent on nanotube chirality. In the presence of a surfactant, the flavin mononucleotide assembly is disrupted and replaced without precipitation by a surfactant micelle. The significantly higher affinity of the flavin mononucleotide assembly for (8,6)-single-walled carbon nanotubes results in an 85% chirality enrichment from a nanotube sample with broad diameter distribution.  相似文献   

16.
Carbon nanotubes are a good realization of one-dimensional crystals where basic science and potential nanodevice applications merge. Defects are known to modify the electrical resistance of carbon nanotubes; they can be present in as-grown carbon nanotubes, but controlling their density externally opens a path towards the tuning of the electronic characteristics of the nanotube. In this work, consecutive Ar+ irradiation doses are applied to single-walled nanotubes (SWNTs) producing a uniform density of defects. After each dose, the room-temperature resistance versus SWNT length (R(L)) along the nanotube is measured. Our data show an exponential dependence of R(L) indicating that the system is within the strong Anderson localization regime. Theoretical simulations demonstrate that mainly di-vacancies contribute to the resistance increase induced by irradiation, and that just a 0.03% of di-vacancies produces an increase of three orders of magnitude in the resistance of a SWNT of 400 nm length.  相似文献   

17.
Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecules can diffuse freely across the nanotube, a membrane-bound protein (tetanus toxin) sees the nanotube as a barrier. Moreover, the size of the barrier depends on the diameter of the nanotube--with larger nanotubes presenting bigger obstacles to diffusion. We then demonstrate detection of protein binding (streptavidin) to the supported lipid bilayer using the nanotube transistor as a charge sensor. This system can be used as a platform to examine the interactions of single molecules with carbon nanotubes and has many potential applications for the study of molecular recognition and other biological processes occurring at cell membranes.  相似文献   

18.
Nitrogen doping in carbon nanotubes   总被引:2,自引:0,他引:2  
Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.  相似文献   

19.
Carbon nanotubes have a variety of remarkable electronic and mechanical properties that, in principle, lend them to promising optoelectronic applications. However, the field has been plagued by heterogeneity in the distributions of synthesized tubes and uncontrolled bundling, both of which have prevented nanotubes from reaching their full potential. Here, a variety of recently demonstrated solution‐processing avenues is presented, which may combat these challenges through manipulation of nanoscale structures. Recent advances in polymer‐wrapping of single‐walled carbon nanotubes (SWNTs) are shown, along with how the resulting nanostructures can selectively disperse tubes while also exploiting the favorable properties of the polymer, such as light‐harvesting ability. New methods to controllably form nanoengineered SWNT networks with controlled nanotube placement are discussed. These nanoengineered networks decrease bundling, lower the percolation threshold, and enable a strong enhancement in charge conductivity compared to random networks, making them potentially attractive for optoelectronic applications. Finally, SWNT applications, to date, in organic and perovskite photovoltaics are reviewed, and insights as to how the aforementioned recent advancements can lead to improved device performance provided.  相似文献   

20.
A carbon nanotube needle biosensor was developed to provide fast, cost effective and highly sensitive electrochemical detection of biomolecules. The sensor was fabricated based on an array of aligned multi-wall carbon nanotubes synthesized by chemical vapor deposition. A bundle of nanotubes in the array was welded onto the tip of a tungsten needle under a microscope. The needle was then encased in glass and a polymer coating leaving only the tip of the needle exposed. Cyclic voltammetry was performed to examine the redox behavior of the nanotube needle. The cyclic voltammetry results showed a steady-state response attributable to radial diffusion with a high steady-state current density. An amperometric sensor was then developed for glucose detection by physically attaching glucose oxidase on the nanotube needle. The amperometric response of these nanotube needles showed a high sensitivity with a low detection limit. It is expected that the nanotube needle can be sharpened to increase the sensitivity to the point where the current is almost too small to measure. The simple manufacturing method should allow commodity level production of highly sensitive electronic biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号