首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
利用分布式风电并网改善配电线路末端电压   总被引:1,自引:0,他引:1  
配电网处于供电服务的最后环节,其"薄弱"问题长期存在,导致末端电压低和供电能力不足的问题经常出现,靠常规手段难以解决。文中提出一种基于分布式风电的配电网末端电压调制技术,其核心思想是在配电网末端并入风电机组,减轻配电线路传输电力,以此提升线路末端电压。以一段典型的辐射式配电线路为例,研究了该技术在改善配电网末端电压、提升配电网效率等方面的实际效果,分析了要使这种技术实用化的需要解决的关键技术,并说明了下一步工作重点。实践数据印证了所述的理论分析结果。  相似文献   

2.
分布式电源具有出力波动性,且接入位置分布不均,其高比例、规模化接入低压配电网将引发线路末端电压越限问题,如何充分利用配电一次设备对配电网的调节能力实现快速灵活调压是提升配电网对分布式电源消纳能力的关键。文中基于智能软开关(SOP)构建了柔性互联配电网,并提出一种基于SOP有功-无功协同的调压方案,相比于现有的储能系统有功调压和设备无功调压方案,在同等装置容量下具备最佳的电压调节性能,可大幅提升配电网对分布式电源的消纳能力。由于SOP的有功功率传递会同时影响互联线路电压,依据各馈线末端固有电压水平划分配电网运行模态,有机结合SOP内部储能装置,提出基于SOP多模态协同的调压控制策略,可同时实现互联配电线路的末端电压越限治理,且该方案可灵活推广应用到多端柔性互联场景。通过所搭建的柔性互联配电网仿真模型,验证了所提控制策略的可行性和有效性。  相似文献   

3.
范成 《电工技术》2023,(24):100-103
为研究分布式光伏发电对配电网电压的影响,解决电压越限的问题,利用公式计算光伏接入引起的节点电压 波动,再通过仿真从光伏容量、接入配电网位置、供电线长度三个角度,验证光伏接入对节点电压分布、母线电压波动 及末端电压提升量的影响.结果显示:分布式光伏容量越大、接入位置越靠近末端,节点电压和电压提升量就越大;分 布式光伏容量越大,母线电压和电压提升量就越大;容量越大,末端电压越大,供电线越长,末端电压的提升量就越 大.还研究了分布式光伏发电易产生的电压越限问题,提出采用光伏逆变器无功控制方案改善配电网电压越限.  相似文献   

4.
考虑到直流输电技术的发展,直流配电应用于配电网中是未来配电网的研究重点。本文为解决主动配电网交直流混合网络的供电恢复问题,提出含直流配电线路的主动配电网供电恢复方案,当交流配电线路出现故障时,考虑直流侧配电线路网损、换流器以及分布式电源影响下的供电恢复方案;当直流配电线路出现故障时,考虑转换直流侧运行方式或让失电的直流负荷转入计划孤岛运行模式,以保证直流侧重要负荷的持续供电,分别提出交流侧和直流侧约束条件,并在约束条件下选取网络损耗、线路末端电压越限节点个数以及开关操作次数作为指标构建目标函数,依据矩阵算法对供电恢复过程的不同恢复方案进行大数据分析与处理,得出最优方案。通过改进的IEEE123节点算例证明,提出的方案能够有效的解决主动配电网的供电恢复问题。  相似文献   

5.
农村配电网及部分城市配电网的末端。常因为供电半径超标而存在供电电压过低的问题。传统的技术解决方案主要有安装并联补偿电容器、调节变压器分接头、平衡三相负荷以及进行线路和台区配电变压器改造。但事实证明。仅仅采取这些措施难以经济有效地解决配电网末端供电电压较低的问题,尤其难以解决库区和山区等偏远地区农网末端用户的供电电压质量问题。为此,在分析农村配电网用户分布特点的基础上。就现有技术下各种补偿方案的经济适用性进行了比较分析,结果表明在散户入线端安装低压线路自动补偿装置的方案相对于其他解决方案更经济更实用。适合在各大电力公司推广应用。最后详细讨论分析了应用串联电压自动补偿装置须要注意的事项。  相似文献   

6.
含分布式电源配电网的故障定位新方案   总被引:1,自引:0,他引:1  
分布式电源(distributed generation,DG)接入配电网后导致配电网辐射型的网络结构发生变化,会对传统的无方向电流保护产生影响。由于配电网的馈线上一般不装设电压互感器,电压量信息无法提取。文章提出一种不借助于电压量信息的故障定位新方案,通过对馈线首端到DG接入点之间的限时电流速断保护和DG接入点到馈线末端之间的定时限过电流保护的动作信息进行分析,实现对故障的准确定位。同时,文中针对多个DG经不同点接入和保护灵敏度不满足要求等几种特殊情况进行了讨论,并提出了相应的解决方法。该故障定位新方案无需额外在配电线路上装设大量的电压互感器和断路器,且保护不受DG输出功率变化的影响,可以保留原来的定值,具有一定的实用性。通过对一个10 kV配电系统进行仿真,验证了本保护方案的正确性。  相似文献   

7.
针对小水电、小风电等分布式新能源大量接入给配电系统带来的电压严重偏高或偏低、供电阻塞等问题,在考虑了新增变电容量、新增线路长度和新增导线截面积对线路供电能力的影响基础上,构建了电压质量、网损和供电可靠性的评价指标,提出了高中压配电线路供电能力基于电压质量、网损和供电可靠性多指标的评价方法.实例计算结果,验证了该方法的可行性、适用性.  相似文献   

8.
随着用电负荷密度逐步增大及大量分布式电源的接入,目前配电网面临着供电能力不足的问题。直流配电网供电容量、线路损耗、各类电源与负荷接入适应性等方面与交流配电网络均有差别。通过对交流供电线路供电能力的分析,推导出直流供电线路在不同约束条件下的供电能力的计算模型,并在假设的不同电压等级及典型负荷分布形式下,分别对常用导线进行了负荷矩与供电距离的比较。由分析可知在计算供电线路供电能力时电压约束和线路损耗约束在交、直流系统中所起作用不同,提出交、直流配电网络线路供电能力计算选取依据,为今后的研究提供参考。  相似文献   

9.
为了探究分散式风电场在不同场景下接入配电网所带来的影响,建立了考虑分散式风电接入的配电网的仿真模型,并进行对比分析。首先,在建立配电网线路基础模型的基础上,分别分析了分散式风电接入对配电网节点电压、潮流分布和网损影响的机理。然后,结合南方电网某配电网案例,研究了在不同场景下,分散式风电以不同的渗透率接入对配电网的影响规律。最后,在实验结果的基础上,分析总结了分散式风电接入对配电网影响的规律。得出了分散式风电场在配电网中不同接入位置、接入容量、接入形式下,配电网中电压和网损分布的一般规律。分散式风电场接在配电网馈线的首端、中端、末端,接入单个或多个风电场,均会对电压和网损分布造成不同的影响。因此,在实际工程中,需要合理设置接入分散式风电场的容量和位置。  相似文献   

10.
冯传浩 《江西电力》2023,(1):24-27+31
为了减少因雷击配电设备导致的线路故障,提高都昌县环鄱阳湖地区的供电可靠性,文中介绍了雷击供电设备现象产生的基本原理;结合都昌县环鄱阳湖地区配电网设备的防雷现状,对都昌县环鄱阳湖地区配电网设备的防雷保护措施和防雷效果进行了分析及评价,并针对存在的问题提出了改进对策。该研究为以后新建线路及老旧线路改造方面提供了防雷设计优化方案,通过防雷优化方案的具体实施可提升都昌县环鄱阳湖地区的10 kV配电线路的防雷效果。  相似文献   

11.
双馈风电场新型无功补偿与电压控制方案   总被引:7,自引:0,他引:7  
为均衡双馈感应发电机感性和容性无功调节能力,改善电压稳定性,提出双馈风电场并联无功补偿方案:在各机组机端装设电容器,其电容值为双馈感应发电机定子电感的倒数;同时在主变的低压侧装设静止无功补偿器(static varcompensator,SVC)进行集中补偿。在此基础上,设计电压协调控制方案:稳态时通过三层无功分配策略充分发挥双馈风电机组无功调节能力,减小风电场内有功损耗;电网故障时则结合送出线路纵联差动保护控制SVC的等效电纳,避免保护动作时发生电压过冲的现象,同时改变机组内部无功分配以提高双馈风电机组故障穿越能力。最后以实际算例仿真表明上述无功补偿与电压控制方案的可行性和有效性。  相似文献   

12.
随着风电穿透功率的增大,在电网电压跌落时切除风电机组的传统控制策略已经不能满足电网安全稳定的要求,因此新的电网规则要求风力发电机组必须具有低电压穿越能力。文中介绍了几种直驱型风电系统常用的直流侧crowbar电路,通过比较,选择直流侧使用卸荷电阻的crowbar电路,并与网侧逆变器配合,实现直驱型风电系统的低电压穿越。仿真结果表明,采用卸荷电阻并配合网侧逆变器控制,可以有效提高直驱型风电系统的低电压穿越能力。  相似文献   

13.
基于半波长输电系统准稳态模型,建立了特高压半波长与直流混联系统,即通过直流线路异步联网的系统间接入半波长输电线路的系统方程,结合直流线路滤波器投切、送受端无功补偿装置等,研究了半波长输电线路两侧端口处系统电压和无功特性,提出了半波长不同送电功率和直流运行功率变化时基于系统的稳态潮流特性的特高压半波长与直流混联系统的送受端联合电压无功控制方案,分析了不同送电功率和负载功率因数情况下半波长输电线路的电压和电流分布特性,以及直流运行功率变化对半波长输电系统潮流电压的影响。  相似文献   

14.
分散式风电机组接入引起的配电网无功潮流变化易导致配电网出现电压偏差,由于配电网自身无功电压调节能力较弱,及时恢复母线电压到正常水平成为分散式风电机组的重要调节任务。提出一种以暂时牺牲最大风能追踪为代价的双馈式风电机组转速变模式控制策略。首先,以最大限度提高机组无功出力极限作为控制目标,寻求分散式风电机组向电网输送的无功功率最大值与风速、发电机转速间的关系,得到能使机组无功出力达到最大的发电机转速指令值;然后,根据控制目标及其他限制条件确定风电机组内部的无功分配方案;最后,结合传统控制算法制定双馈风力发电机转速变模式控制策略。PSCAD的仿真结果验证了所提控制策略的有效性。  相似文献   

15.
结合风电机组的结构和并网原理,对直驱风电机组提出了"卸荷电路+无功补偿"的低电压穿越改进控制方法,对双馈风电机组采用了DC-Chopper和SDBR(series dynamic braking resistor)代替Crowbar的低电压穿越改进控制方法。以PSCAD为平台分别构建了具备低电压穿越能力的直驱风电机组和双馈风电机组的并网仿真模型;结合风电并网技术规程,采用电压跌落器仿真验证了直驱、双馈风电机组在电网电压跌落下的低电压穿越能力。参照新疆达坂城实际风电场群接入系统方案,构建了包含具备低电压穿越能力的直驱、双馈风电机组的集群风电场仿真算例,研究了风电场送出线故障、集群风电场送出线电压跌落、系统线路电压跌落时风电场群故障穿越特性。仿真结果表明:集群接入风电场送出线电压跌落会影响相邻风电场及系统的电压和频率,故障结束后整个风电接入系统可以在风电接入技术规程要求的时间内恢复至稳态运行状态。研究成果有助于分析风电大规模集群接入系统的运行特性,提高电力系统对风电的接纳能力。  相似文献   

16.
全功率变流器永磁直驱风电系统低电压穿越特性研究   总被引:28,自引:4,他引:24  
随着风电机组安装容量的不断上升,风电系统在电网故障情况下的运行变得尤为重要,电网导则要求风电机组在电网电压瞬间跌落一定范围内不脱网运行。针对使用背靠背全功率变流器的永磁直驱风电系统,提出一种在电网电压瞬间跌落情况下不脱网运行的方法。电网发生电压瞬间跌落时,网侧变流器运行在静止无功补偿(STATCOM)模式,依据电网电压跌落的深度决定发出无功电流的大小,通过快速提供无功电流来稳定电网电压,实现直驱型风电系统的低电压穿越功能。仿真和实验结果表明电网电压故障时使直驱风电系统运行在STATCOM模式可以有效提高低电压穿越能力。  相似文献   

17.
风电场110kV单回送出线主动探测式三相重合闸方法   总被引:2,自引:2,他引:0  
风电场110 kV单回送出线因故障而三相跳闸后,输电线路电磁能量迅速衰减,给故障性质识别带来了很大困难,且风电场失去与系统连接后处于孤岛状态,由于功率阻滞,孤岛系统的电压、频率迅速失稳导致切机。提出利用风机变流器向送出线注入低电流实现故障性质识别的方法,在风电机组切机后,先闭合一台风机主断路器和送出线靠近风电场一侧的断路器,短时导通风机网侧变流器电力电子器件,使得其直流侧电容向交流线路放电,利用电流积分特征构造保护判据实现故障性质识别,并提出风电场110 kV单回送出线主动探测式三相自适应重合闸方案。通过PSCAD/EMTDC仿真验证了故障性质识别和主动探测式重合闸方案的正确性。  相似文献   

18.
姜凤利  张鑫  王俊  朴在林 《中国电力》2017,50(3):137-142
由于风电输出功率的随机性,风电机组的大量接入给配电网无功优化带来更多不确定性因素。为了提高配电网无功优化对风力发电并网的适应能力,建立了多负荷水平下基于场景分析的考虑风电接入的多目标无功优化模型。该模型综合考虑了节省电能损失费用和节点电压偏差2个指标,将2个指标进行模糊化,采用最大化模糊满意度指标法将多目标优化问题转换为单目标优化问题,然后采用自适应遗传算法进行求解。并以IEEE 33节点测试系统为例,计算和分析了在不同场景时最大负荷、一般负荷和最小负荷3种负荷水平下,电容器投切、系统有功损耗、节点电压以及节省电能费用情况。计算结果表明,所提出的无功模糊优化方法,在不同负荷水平、不同场景下改善电压质量和降损节能效果显著,适合多负荷水平下含风电机组的配电网无功优化需要。  相似文献   

19.
风电场投切对地区电网电压的影响   总被引:5,自引:1,他引:4  
席皛  李海燕  孔庆东 《电网技术》2008,32(10):58-62
随着风电场装机容量的不断增加,在风电场规划设计阶段计算含风电场的系统潮流并分析风电场接入对系统稳定性的影响非常重要。文章结合目前我国风电场的普遍运行情况,针对吉林省电网的特点,通过各种运行方式和工况下的模拟潮流计算,比较了系统中某些节点电压与风电场出力的变化情况,论述了风电场出力变化引起地区电网电压升高与降低的原因;给出了减小风电场出力变化对地区电网电压波动影响的措施,即在汇流变电站装设电抗器,在汇流变电站接入电网送电线路的对端变电站内装设电容器,电压高时投入电抗器切除电容器,电压低时切除电抗器投入电容器;当风电场装机容量较大时应将风电场直接接入220 kV变电站或500 kV变电站。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号