首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies conducted during the sixties and the seventies on food crops in Uganda showed that the populace was exposed to consumption of aflatoxin-contaminated foods. These studies also linked the highest incidence of liver cancer in the world to the presence of high levels of aflatoxins in the food and beverages. After a lapse of a decade, it was of interest to investigate the occurrence of aflatoxins and aflatoxigenic fungi in staple Ugandan food crops and poultry feeds derived from these foodstuffs. A simple, rapid and reproducible procedure was used. The procedure consisted of growing or culturing feed grains on a selective medium, Aspergillus flavus/parasiticus agar (AFPA) followed by screening for aflatoxin producing fungi on a coconut agar medium (CAM) under UV light with a subsequent confirmatory screening method for aflatoxin production by the fungi in pure culture. Fifty-four samples consisting of corn and peanuts, soybean and poultry feed were analyzed for content of aflatoxigenic. A. flavus/parasiticus and 25 of the samples were also screened for aflatoxins B1 and G1, zearalenone, sterigmatocystin, ochratoxin A, citrinin, vomitoxin, and diacetoxyscirpenol (DAS). Aflatoxigenic A. flavus/parasiticus was detected from the majority of corn (77%), peanuts (36% human food and 83.3% animal feed) and poultry feed (66.6%). but not from soybean samples. Two samples out of 25 contained detectable levels of aJatosin B, (20 ppb). For the jirst time other mycotoxins, zearalenone (3 samples) and vomitoxin (2 samples) were detected in corn from Uganda.  相似文献   

2.
Over a period of three years 420 samples of various smoke-dried meat products, collected from individual households in different region of Croatia were analysed for the presence of aflatoxigenic strains of the Aspergillus flavus group. Strains of A. flavus and A. parasiticus were present in 17,8% of the samples, and aflatoxin-producing ability was tested in 75 strains. In relation to sequential method of aflatoxin detection, 5 of 8 isolates were found in the first step (fluorescence in aflatoxin-producing ability medium - APA) and all of them in the second step (extraction method from syntheses on moist shredded wheat - SW). A. flavus strains produced mainly aflatoxin B1, and had various levels of toxigenicity (1.4–3.12 mg/kg). Some strains of A. parasiticus produced all four aflatoxins B1 B2 G1 G2, while the other ones produced AF B1 + G1 only, with concentrations of aflatoxins from 0.1 to 450 mg/kg.  相似文献   

3.
A total of 133 samples (mixed feeds and cereal grains) were examined in order to detect the incidence of strains of the Aspergillus flavus group. The ability to produce aflatoxin was tested in all strains isolated on cracked rice, aflatoxin-producing-ability (APA) medium and glucose-yeast extract agar (GYA) medium. Ten out of the 67 isolations were aflatoxin-producing strains in rice and GYA medium; only three of them were aflatoxin-positive on the APA test. Of those isolated 95% were identified as A. flavus. The GYA medium is the most efficient and easiest way to detect B1, B2, G1 and G2 aflatoxin-producing-strains.  相似文献   

4.
The distribution of Aspergillus flavus and Aspergillus parasiticus in sugarcane field soils and on harvested sugarcane stems was studied on seven islands of Okinawa and Kagoshima Prefectures, the southernmost prefectures in Japan. With the use of a combination of dilution plate and plant debris plate techniques, the fungi were detected on all seven islands studied and in 74% of 53 soil samples. The fungi were also found on the cut surfaces of sugarcane stems from one of the islands. A. parasiticus was the predominant fungus, although many atypical A. parasiticus isolates that produced metulated conidial heads were also obtained. The proportions of isolates testing positive for aflatoxin production were ca. 89% (146 of 164) of all isolates and ca. 69% of A. flavus isolates. More than 40% of A. flavus isolates also produced G aflatoxins. Scanning electron microscopic observation of conidial wall texture was useful in distinguishing A. parasiticus from A. flavus. Cyclopiazonic acid, an indole mycotoxin, was never synthesized by any of the A. parasiticus or G aflatoxin-producing A. flavus isolates tested.  相似文献   

5.
Soil in corn plots was inoculated with nonaflatoxigenic strains of Aspergillus flavus and A. parasiticus during crop years 1994 to 1997 to determine the effect of application of the nontoxigenic strains on preharvest aflatoxin contamination of corn. Corn plots in a separate part of the field were not inoculated and served as controls. Inoculation resulted in significant increases in the total A. flavus/parasiticus soil population in treated plots, and that population was dominated by the applied strain of A. parasiticus (NRRL 21369). In the years when weather conditions favored aflatoxin contamination (1996 and 1997), corn was predominately colonized by A. flavus as opposed to A. parasiticus. In 1996, colonization by wild-type A. flavus was significantly reduced in treated plots compared with control plots, but total A. flavus/parasiticus colonization was not different between the two groups. A change to a more aggressive strain of A. flavus (NRRL 21882) as part of the biocontrol inoculum in 1997 resulted in a significantly (P < 0.001) higher colonization of corn by the applied strain. Weather conditions did not favor aflatoxin contamination in 1994 and 1995. In 1996, the aflatoxin concentration in corn from treated plots averaged 24.0 ppb, a reduction of 87% compared with the aflatoxin in control plots that averaged 188.4 ppb. In 1997, aflatoxin was reduced by 66% in treated corn (29.8 ppb) compared with control corn (87.5 ppb). Together, the data indicated that although the applied strain of A. parasiticus dominated in the soil, the nonaflatoxigenic strains of A. flavus were more responsible for the observed reductions in aflatoxin contamination. Inclusion of a nonaflatoxigenic strain of A. parasiticus in a biological control formulation for aflatoxin contamination may not be as important for airborne crops, such as corn, as for soilborne crops, such as peanuts.  相似文献   

6.
Peanuts are important food commodities, but they are susceptible to fungal infestation and mycotoxin contamination. Raw peanuts were purchased from retail outlets in Botswana and examined for fungi and mycotoxin (aflatoxins and cyclopiazonic acid) contamination. Zygomycetes were the most common fungi isolated; they accounted for 41% of all the isolates and were found on 98% of the peanut samples. Among the Zygomycetes, Absidia corymbifera and Rhizopus stolonifer were the most common. Aspergillus spp. accounted for 35% of all the isolates, with Aspergillus niger being the most prevalent (20.4%). Aspergillus flavus/parasiticus were also present and accounted for 8.5% of all the isolates, with A. flavus accounting for the majority of the A. flavus/parasiticus identified. Of the 32 isolates of A. flavus screened for mycotoxin production, 11 did not produce detectable aflatoxins, 8 produced only aflatoxins B1 and B2, and 13 produced all four aflatoxins (B1, B2, G1, and G2) in varying amounts. Only 6 of the A. flavus isolates produced cyclopiazonic acid at concentrations ranging from 1 to 55 microg/kg. The one A. parasiticus isolate screened also produced all the four aflatoxins (1,200 microg/kg) but did not produce cyclopiazonic acid. When the raw peanut samples (n = 120) were analyzed for total aflatoxins, 78% contained aflatoxins at concentrations ranging from 12 to 329 microg/kg. Many of the samples (49%) contained total aflatoxins at concentrations above the 20 microg/kg limit set by the World Health Organization. Only 21% (n = 83) of the samples contained cyclopiazonic acid with concentrations ranging from 1 to 10 microg/kg. The results show that mycotoxins and toxigenic fungi are common contaminants of peanuts sold at retail in Botswana.  相似文献   

7.
Mold counts and Aspergillus section Flavi populations in rice and its by-products from the Philippines were examined. The average mold counts of rough rice, brown rice, and locally produced polished rice were 4.1 x 10(3), 1.0 x 10(3), and 1.1 x 10(3) CFU/g, respectively. Average Aspergillus section Flavi counts of the same samples were 3.0 x 10(2), 1.1 x 10(2), and 2.6 x 10(2) CFU/g, respectively. Twenty-seven percent of mold isolates from rough rice, polished rice, and brown rice were section Flavi spp., 31% of which were toxigenic. No section Flavi isolates were obtained from imported rice samples from Thailand and Vietnam. Aspergillus section Flavi was also isolated from rice hull, rice bran, and settled dust from rice milling operations. Toxigenic isolates of both Aspergillus flavus and Aspergillus parasiticus were present in at least one sample of each type of rice and rice by-product except settled dust. Aflatoxins produced in vitro by the isolates ranged from <1 microg/kg to 6,227 microg/kg. A. flavus isolates produced only B aflatoxins, whereas A. parasiticus isolates produced both B and G aflatoxins. Although total mold counts of Philippine rice and its by-products are within tolerable limits, the establishment of maximum limits in counts of potentially aflatoxigenic species in foods and feeds is important because the mere presence of toxin producers is considered a possible risk factor. The results of this research illustrate the need for strict monitoring of rice during both storage and marketing, especially in warm and humid seasons when infestation and consequent production of aflatoxins by Aspergillus section Flavi is expected.  相似文献   

8.
为探明西藏高原粮油作物曲霉菌污染状况及黄曲霉菌产毒能力,连续5年对西藏青稞、小麦、花生3种作物中曲霉菌污染情况进行分析,并对其分离到的黄曲霉菌株开展产毒力研究,结果表明,204份样品中,共分离出15种曲霉菌,曲霉菌污染率呈花生>青稞>小麦。青稞、小麦中曲霉属优势种均为黑曲霉(Aspergillus niger),真菌毒素主要为杂色曲霉毒素和赭曲霉毒素;花生优势种为黄曲霉(A.flavus);仅受黄曲霉毒素污染。来源于不同作物的黄曲霉菌,其产毒类型也有差异,麦类作物产毒菌株以产黄曲霉毒素B1(AFB1)、黄曲霉毒素B2(AFB2)为主;花生产毒菌株以产AFB1、AFB2、AFG1、AFG2为主。  相似文献   

9.
Aspergillus flavus and Aspergillus parasiticus are important plant pathogens and causal agents of pre- and postharvest rots of corn, peanuts, and tree nuts. These fungal pathogens cause significant crop losses and produce aflatoxins, which contaminate many food products and contribute to liver cancer worldwide. Aqueous preparations of Tulbaghia violacea (wild garlic) were antifungal and at 10 mg/ml resulted in sustained growth inhibition of greater than 50% for both A. flavus and A. parasiticus. Light microscopy revealed that the plant extract inhibited conidial germination in a dose-dependent manner. When exposed to T. violacea extract concentrations of 10 mg/ml and above, A. parasiticus conidia began germinating earlier and germination was completed before that of A. flavus, indicating that A. parasiticus conidia were more resistant to the antifungal effects of T. violacea than were A. flavus conidia. At a subinhibitory extract dose of 15 mg/ml, hyphae of both fungal species exhibited increased granulation and vesicle formation, possibly due to increased reactivity between hyphal cellular components and T. violacea extract. These hyphal changes were not seen when hyphae were formed in the absence of the extract. Transmission electron microscopy revealed thickening of conidial cell walls in both fungal species when grown in the presence of the plant extract. Cell walls of A. flavus also became considerably thicker than those of A. parasiticus, indicating differential response to the extract. Aqueous preparations of T. violacea can be used as antifungal treatments for the control of A. flavus and A. parasiticus. Because the extract exhibited a more pronounced effect on A. flavus than on A. parasiticus, higher doses may be needed for control of A. parasiticus infections.  相似文献   

10.
Identification and quantification of fungi and mycotoxins from Pu-erh tea   总被引:2,自引:0,他引:2  
Pu-erh tea originates from the province of Yunnan in south-western China. As this tea is produced by so called Aspergillus post-fermentation the question arises which molds and mycotoxins may be found in this tea. In total 36 samples of Pu-erh tea were investigated for their content of filamentous fungi and the mycotoxins aflatoxins B1, B2, G1, and G2, fumonisins B1, B2, and B3, and ochratoxin A. Fungi were isolated from all samples in a concentration of 1.0 × 101 to 2.6 × 106 colony forming units (cfu)/g tea, all together 19 fungal genera and 31 species were identified. The most prevalent species were Aspergillus acidus and Aspergillus fumigatus, followed by Zygomycetes and Penicillium species. Aflatoxins and fumonisins were not found in the samples investigated, ochratoxin A was detected in 4 of 36 teas (11.1%).  相似文献   

11.
Seventeen mold strains were isolated from ‘Greek-style’ black olives produced in Morocco. Eight of these isolates were identified as Aspergillus flavus, seven as Aspergillus petrakii, and two as Aspergillus ocharaceus Wilhelm. The A. flavus strains were tested for production of aflatoxins B1, B2, G1, and G2; and A. ochraceus and A. petrakii strains were tested for production of ochratoxin, penicillic acid, patulin, and citrinin. The organisms were tested for mycotoxin production on five different substrates, including rice powder-corn steep agar, autoclaved rice, yeast-extract sucrose broth (YES), potato dextrose agar (PDA), and fresh olive paste. All strains of A. flavus produced aflatoxins on all substrates except olive paste and PDA. In PDA, only two strains produced Aflatoxin B1. Five A. ochraceus group isolates produced penicillic acid on one or more of the substrates, but only two out of the five produced penicillic acid on olive paste. None produced ochratoxin, patulin or citrinin. Quantities of aflatoxin B1 produced in rice ranged from 5 to 14 μg/g of rice, and of penicillic acid 15–32 μg/g of rice. In olive paste, the concentrations of penicillic acid were 11.4 and 30.2 μg/g. Biological toxicity of extracts of mold cultures was confirmed using chicken embryos and a microbiological test. Crude extracts of cultures were also tested for mutagenicity using the Salmonella mutagenicity (Ames) Test, and some gave positive mutagenic responses.  相似文献   

12.
Aflatoxin-producing Aspergillus species from Thailand   总被引:1,自引:0,他引:1  
Aflatoxin-producing Aspergillus species were isolated from soil samples from ten different regions within Thailand. Aspergillus flavus was present in all of the soil samples. Unlike previous studies, we found no A. parasiticus or A. flavus capable of both B- and G-type aflatoxin production in any of the samples. A. pseudotamarii, which had not been previously reported from Thailand, was found in four soil samples. In two of the samples A. nomius was determined to be the most abundant aflatoxin-producing species. Based on sequence alignments for three DNA regions (Taka-amylase A (taa), the rRNA internal transcribed spacer (ITS), and the intergenic region for the aflatoxin biosynthesis genes aflJ and aflR) the A. nomius isolates separated into three well-supported clades. Isolates from one of the A. nomius clades had morphological properties similar to those found for S-type isolates capable of B and G aflatoxin production and could easily be mistaken for these isolates. Our results suggest that such unusual A. nomius isolates could be a previously unrecognized agent for aflatoxin contamination in Thailand.  相似文献   

13.
Zearalenone was detected as the natural contaminant in two samples of Amaranthus cruentus grains (1980 micrograms/kg and 420 micrograms/kg, respectively). Fungi isolated from these samples were screened for mycotoxin production. Two of eight isolates of Fusarium (F. equiseti and F. moniliforme) produced zearalenone. One of four isolates of Aspergillus flavus and all four isolates of A. parasiticus produced aflatoxins. Other species potentially toxicogenic such as Aspergillus versicolor, Penicillium viridicatum, P. puberulum, P. crustosum, P. citrinum, P. expansum and Fusarium solani were also found.  相似文献   

14.
Contamination of food and feedstuffs by Aspergillus species and their toxic metabolites is a serious problem as they have adverse effects on human and animal health. Hence, food contamination monitoring is an important activity, which gives information on the level and type of contamination. A PCR-based method of detection of Aspergillus species was developed in spiked samples of sterile maize flour. Gene-specific primers were designed to target aflR gene, and restriction fragment length polymorphism (RFLP) of the PCR product was done to differentiate Aspergillus flavus and Aspergillus parasiticus. Sterile maize flour was inoculated separately with A. flavus and A. parasiticus, each at several spore concentrations. Positive results were obtained only after 12-h incubation in enriched media, with extracts of maize inoculated with A. flavus (101 spores/g) and A. parasiticus (104 spores/g). PCR products were subjected to restriction endonuclease (HincII and PvuII) analysis to look for RFLPs. PCR-RFLP patterns obtained with these two enzymes showed enough differences to distinguish A. flavus and A. parasiticus. This approach of differentiating these two species would be simpler, less costly and quicker than conventional sequencing of PCR products.  相似文献   

15.
Theabrownins (TB) are polymeric phenolic compounds associated with the multiple bioactivities of Pu-erh tea, a post-fermented Chinese dark tea. High-TB instant Pu-erh tea was produced via a novel submerged fermentation (SF) using Aspergillus tubingensis and compared with samples produced commercially via the conventional solid-state fermentation (SSF). Viable microorganisms and microbial toxins, especially aflatoxins B1, G1, B2, G2, cyclopiazonic acid, fumonisins B1, B2, B3 and ochratoxin A, were below the detection limit in all samples. Fewer microbial metabolites were found in SF instant tea compared with the SSF teas. Based on an adult consuming 1 g of instant Pu-erh tea daily, the dietary intake of investigated elements was below the safe limits recommended by various authorities. Tasters viewed the instant tea infusions as very mild, smooth, mellow and full. This suggested that submerged fermentation using A. tubingensis offers a speedy and safe alternative to commercial production of instant Pu-erh tea.  相似文献   

16.
Sterigmatocystin (STC) is a toxic secondary metabolite produced by more than 50 fungal species, including Aspergillus flavus, A. parasiticus, A. nidulans, and A. versicolor. The Joint FAO/WHO Expert Committee on Food Additives concluded that sterigmatocystin is genotoxic and carcinogenic with the critical effect determined to be carcinogenicity. The present study describes a simple method to prepare hapten and immunogens in order to generate polyclonal antibodies against this metabolite. We developed a sensitive and specific polyclonal antibody-based competitive indirect enzyme-linked immunosorbent assay (ciELISA) for monitoring STC in wheat and corn flours without the need for derivatisation of STC or clean-up of samples by immunoaffinity chromatography for quantification. The half inhibitory concentration (IC50) of the established method was 4.52 ± 0.81 ng mL?1, with the limit of detection (IC10) being 0.19 ± 0.04 ng mL?1 in wheat and corn flour matrices with the coefficient of variation of less than 22%.The assay was very specific to STC and showed no cross-reactivity with its analogue structures. The ELISA allowed for up to 5% methanol without significant influence on the IC50 value. Validation of the assay was performed by spiking STC into a blank flour matrix and the recoveries were in the range of 75.3 % to 104.5 % with a coefficient of variation less than 15%. A small retail survey was conducted by purchasing wheat (n = 8) and corn flours (n = 2) from local grocery stores. All of these retail samples were negative for STC using the developed ELISA method and were confirmed by LC-MS/MS. We demonstrated a rapid, simple, and reliable method for screening STC in wheat and corn flours.  相似文献   

17.
Harvesting of Brazil nuts not only helps to preserve the Amazon rainforest but also provides income to individuals who would otherwise have little means of making a livelihood. Recently, the European Community has tightened the quality requirements for Brazil nuts, particularly with regard to aflatoxin levels and microbiological contamination. The objectives of this research were to gain a better understanding of the origin of aflatoxins on Brazil nuts and to microbiologically evaluate some of the operations involved in processing. In this regard, five Brazil nut pods were aseptically picked from trees located in each of three concessions of the Peruvian Amazon rainforest (Madre de Dios province). The exteriors of the pods and the nuts were examined for yeast and molds, including Aspergillus flavus and Aspergillus parasiticus, and for bacteria, including Salmonella and Escherichia coli. Brazil nuts obtained from various commercial process operations located in Peru were similarly evaluated. Exteriors of all Brazil nut pods did not contain A. parasiticus, and only pods from one concession yielded A. flavus isolates. All isolates tested were aflatoxigenic (630 to 915 ppb total aflatoxin). Coliforms, E. coli, and salmonellae were not recovered from any of the pods. Whole, in-shell nuts obtained after opening the pods yielded no A. flavus or A. parasiticus. Aflatoxins were not detected (detection limit 1.75 ppb) in any of the nuts. Whole, in-shell and shelled nuts from various process operations were all positive for A. flavus but negative for E. coli and salmonellae. Soaking of whole, in-shell nuts before cracking or shelling increased coliform numbers, whereas levels of A. flavus decreased. In order to gain a better understanding of the sanitary performance of the unit process operations, additional evaluations should be conducted on product lots processed on different days. Also, the microbiology of product processed from common lots should be followed through the various unit operations and compared.  相似文献   

18.
Aflatoxin producing strains of Aspergillus flayus Link (IMI 280819) and A. oryzae (Ahlb.) Cohn (IMI 280831) were among the eleven spoilage moulds isolated from five types of poultry feeds. The recorded pH and moisture content values of the various feeds are conducive to mould deterioration. All the four principal aflatoxins (B1, B2, G1, G2) were detected in the analysed feeds though at toxicologically ‘safe’ levels for most farm animals. Significant quantities of aflatoxin B1 were produced by the two fungal isolates in all the five classes of poultry feeds with A. flavus yielding the larger amounts. Optimum aflatoxin B1 production and mycelial growth in chick mash infusion medium were recorded for both species at 30 and 35 °C, respectively and similarly on the 8th and 6th day respectively when cultures were incubated at 30 °C.  相似文献   

19.
Ninety random grain samples were collected and analyzed for mycotoxins, and the effect of gamma irradiation on the production of mycotoxins in grains was studied. Aspergillus, Penicillium, Mucor, Rhizopus, Fusarium, Alternaria, Scopulariopsis and Cladosporium were the most common fungal genera isolated from grains. Aspergillus flavus, Aspergillus niger, Aspergillus candidus, Aspergillus ochraceus, Penicillium citrinum, Penicillium expansum, Penicillium citreonigrum, Penicillium purpurogenum, Penicillium griseofulvum and Penicillium verrucosumwere the most common Aspergillus and Penicillium species in grains. Out of 120 Aspergillus and Penicillium isolates, 80 were mycotoxin producers. Analysis of grains revealed the occurrence of aflatoxin B1 ochratoxin A, cycolopiazonic acid and citrinin. Of the 90 samples, 67 were positive for one or more mycotoxin. Irradiation of grains at dose of 2.0 and 4.0 kGy decreased significantly the total fungal counts compared with unirradiated controls. After 100 days of storage at room temperature, the unirradiated grains were contaminated with high concentrations of mycotoxins as compared with irradiated 4.0‐kGy samples. Mycotoxin production in grains decreased with increasing irradiation doses and was not detected at 6.0 kGy over 100 days of storage.  相似文献   

20.
Past surveys indicated that the occurrence of aflatoxins, zearalenone and ochratoxin A was not a problem in corn and corn products in the state of São Paulo, Brazil. However, according to recent studies, a change in pattern has been detected. To obtain a better overview, these toxins were searched for in 110 samples of freshly harvested corn, corresponding to 48 commercial cultivars planted at three different locations in the state. Aflatoxin contamination was found in 60 (54.5%) of the samples, in levels ranging from 6 to 1600 µg kg?1 aflatoxin B1. Insect control was exercised, so this was not the main route of corn infection. Endosperm type, germplasm type, number of days to flowering, and length of time the mature corn remained in the field had no effect on aflatoxin contamination. Ochratoxin A was found in two samples (206 and 128 µg kg?1) and zearalenone in one sample (4640 µg kg?1). Possible causes of the increase in aflatoxin levels may lie in the changing nature of the commercial cultivars employed, associated with the forsaking of the original landraces, and in a change in the toxigenicity pattern of the corn mycoflora Aspergillus flavus/Aspergillus parasiticus prevailing strains. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号