首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
提出一种利用CEI(连接端站干涉测量)和天线组阵技术提高实时测量精度的方法。该方法采用了电离层和对流层模型对消技术,简化了副站测量设备,由天线组阵构成的多基线CEI阵列,可获得更高的测量精度。通过与长距离3S测距转发体制比较的仿真实验证明,二者测量结果相当,为深空探测等航天活动提供了低成本、高精度、准实时的测量手段。  相似文献   

2.
针对高轨卫星连线干涉测量(Connected Element Interferometry,CEI)信号的高精度频率估计这一难题,建立了CEI中的正弦信号频率估计模型。设计了基于深度学习框架的CEI信号频率估计算法,将算法划分为基于前馈深度神经网络的频率表征模块和基于卷积神经网络的频率计算及估计模块,在此基础上设计了各模块的具体结构和学习训练流程。对于算法的核心模块进行了仿真实验验证,并将所提算法与前人的相关算法进行了比较与分析,证明了该算法的有效性、稳定性和优越性。  相似文献   

3.
针对航天器初始轨道精度无法满足连线干涉测量(CEI)载波相位解模糊需求的问题,提出了一种采用短基线天线阵辅助的解模糊方法。从理论上分析了载波相位模糊产生的原因以及不同方向角、不同基线长度条件下解模糊对轨道预报精度的最低要求,对具有代表性的1 km短基线天线阵在主站测距加两基线方向角(Rlm)体制下的定位精度进行了仿真,结果表明,方向角越大,该方法的无模糊基线长度扩展能力越强。最后给出了达到最优测角精度的基线长度设置和解模糊流程。  相似文献   

4.
《无线电工程》2019,(5):357-362
同步轨道卫星在通信、气象、导航定位、对地观测、数据中继等领域应用广泛,对其轨道精度的要求也越来越高。结合国内外卫星系统的高精度测量体制,介绍了我国GEO卫星高精度测定轨技术的2个发展趋势:厘米级高精度多站测距技术和主动CEI测量定轨技术,给出了相应的误差分析、关键技术及解决途径,并介绍了最新试验进展。试验结果表明,给出的2种技术体制均能够实现近10 m量级的GEO卫星实时定轨精度,满足我国GEO卫星的高精度测定轨需求。  相似文献   

5.
同时全极化雷达是面向空中运动目标动态散射矩阵测量的一种全极化雷达,针对同时全极化雷达系统特点,对同时全极化雷达系统中匹配滤波器引入的误差进行了分析,并仿照分时全极化雷达系统模型的发射和接收失真矩阵模型,给出了匹配滤波器引入的失真矩阵及各矩阵元素的物理意义。分析了目标运动估计对目标动态散射矩阵测量的影响机理,提出了运动估计误差矩阵,利用该矩阵对同时全极化雷达测量影响进行了定量仿真分析,从而为同时全极化雷达系统运动估计方法的性能要求提供理论依据。  相似文献   

6.
高精度测量体制直接关系到飞行试验能否获取完整的高精度测量数据。针对5种高精度测量体制,提出了选择测量体制的原则,从可靠度、精度、技术先进性、设备可实现性、使用方便性、靶场适应用性等方面进行论证,认为连续波多RR系统是一种较好的测量体制,并对该体制的关键技术难点的解决途径进行了分析。  相似文献   

7.
姚琪 《现代雷达》2006,28(11):22-24
L波段二次测风系统是气象探测的主力设备,对该系统而言接收的信噪比是改善测量精度的关键。为了达到这个目的,该文设计了一种全新体制的L波段二次测风雷达系统。其系统采用单脉冲和相扫技术,提高了测量精度。文中主要从信噪比角度出发对该系统的测量精度进行了分析,并得出了该系统性能符合指标要求的结论。  相似文献   

8.
在航天飞行器外弹道测量中,对航天器的跟踪测量和定轨方法研究一直是航天领域的一个热点问题,回顾了国外航天测控体制的发展历程,分析了我国靶场目前的多站测速定轨体制,从航天测量体制建设和数据处理技术着手,探讨了对多站测速定轨体制进行改进的技术途径,提出了从测量体制、设备性能改进和数据处理方法来改进和完善靶场航天测控网。  相似文献   

9.
文中从极化雷达发展趋势的角度,对极化测量关键技术进行了梳理,明确了极化测量雷达体制的概念和内涵,并通过暗室测量实验和仿真实验比较了各测量体制间的差异和优缺点,证明了在目标极化特性快起伏情况下,分时极化测量不能完整准确地反映目标极化特性,此时瞬时极化测量的性能明显优于分时极化测量,并指出了紧凑极化体制的特点及应用。  相似文献   

10.
C^2算法在雷达低空目标俯仰角测量中的应用   总被引:1,自引:0,他引:1  
由于多径信号的干扰,单脉冲比幅测角体制的雷达在对低空目标俯仰角测量时,会带来很大的误差。将传统的多目标分辨算法(C^2算法)应用于某相控阵雷达系统低空目标偏轴跟踪中俯仰角的测量,文中给出某次实际飞行试验中的测量结果,并对测量结果进行修正,表明该算法具有比较优良的抗多径干扰性能,验证了该算法在低空多径环境下目标俯仰角测量的有效性和可实施性。  相似文献   

11.
走向深空--测控通信的发展方向   总被引:4,自引:3,他引:4  
介绍了深空测控通信的基本技术问题,分析了深空测控通信的特点,对其前沿技术进行了探讨,包括极微弱信号的接收技术、超低噪声接收技术、巨型波导波束天线及其组阵技术、极低码速率数传、极窄带锁相接收、极限纠错编码、深空定轨、深空应答机、站间联结干涉仪、超高稳定原子钟、工作频段向Ka和光通信频段发展等。  相似文献   

12.
High-energy-density Li-rich layered oxides (LLOs) as promising cathodes for Li-ion batteries suffer from the dissolution of transition metals (especially manganese) and severe side reactions in conventional electrolytes, which greatly deteriorate their electrochemical performance. Herein, an in situ “anchoring + pouring” synergistic cathode–electrolyte interphase (CEI) construction is realized by using 1,3,6-hexanetricarbonitrile (HTCN) and tris(trimethylsilyl) phosphate (TMSP) electrolyte additives to alleviate the challenges of an LLO (Li1.13Mn0.517Ni0.256Co0.097O2). HTCN with three nitrile groups can tightly anchor transition metals by coordinative interaction to form the CEI framework, and TMSP will electrochemically decompose to reshape the CEI layer. The uniform and robust in situ constructed CEI layer can suppress the transition metal dissolution, shield the cathode against diverse side reactions, and significantly improve the overall electrochemical performance of the cathod with a discharge voltage decay of only 0.5 mV cycle−1. Further investigations based on a series of experimental techniques and theoretical calculations have revealed the composition of in situ constructed CEI layers and their distribution, including the enhanced HTCN anchoring effect after lattice densification of LLOs. This study provides insights into the in situ CEI construction for enhancing the performance of high-energy and high-voltage cathode materials through effective, convenient, and economical electrolyte approaches.  相似文献   

13.
Tailoring inorganic components of cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) is critical to improving the cycling performance of lithium metal batteries. However, it is challenging due to complicated electrolyte reactions on cathode/anode surfaces. Herein, the species and inorganic component content of the CEI/SEI is enriched with an objectively gradient distribution through employing pentafluorophenyl 4-nitrobenzenesulfonate (PFBNBS) as electrolyte additive guided by engineering bond order with functional groups. In addition, a catalytic effect of LiNi0.6Mn0.2Co0.2O2 (NCM622) cathode is proposed on the decomposition of PFBNBS. PFBNBS with lower highest occupied molecular orbital can be preferentially oxidized on the NCM622 surface with the help of the catalytic effect to induce an inorganic-rich CEI for superior electrochemical performance at high voltage. Moreover, PFBNBS can be reduced on the Li surface due to its lower lowest unoccupied molecular orbital , increasing inorganic moieties in SEI for inhibiting Li dendrite generation. Thus, 4.5 V Li||NCM622 batteries with such electrolyte can retain 70.4% of initial capacity after 500 cycles at 0.2 C, which is attributed to the protective effect of the excellent CEI on NCM622 and the inhibitory effect of its derived CEI/SEI on continuous electrolyte decomposition.  相似文献   

14.
The oxidative capability of Ni4+ and high operation voltage of nickel-rich LiNi1−x−yCoxMnyO2 (Ni-rich NCM) cause its continuous and deleterious side reactions with electrolyte and irreversible phase transition, which hinder its industrial application. To mitigate these issues, Al (CF3SO3)3 is proposed as a solid electrolyte additive that can be readily oxidized to regulate the cathode-electrolyte interphase (CEI) due to the highest occupied molecular orbital-level of CF3SO3, meanwhile being confined within the single-crystalline NCM811. CF3SO3 prior to the electrolyte is oxidized upon increasing voltage to produce sulfur components and involve CEI formation. Concurrently, the released Al3+ ions are combined with reactive oxygen from NCM811 particles and HF from the electrolyte to form Al2O3 and AlF3, respectively. A robust sandwich CEI film containing sulfur and aluminum species is formed, which cannot only prevent decomposition of the electrolyte, but also alleviate the formation of inactive rock-salt phase on NCM811 surface. Consequently, such CEI leads to high-performance batteries with a high-capacity retention of 91.5% after 200 cycles under 0.5 C compared to 72.4% of pristine NCM811. This facile and environmentally benign method provides a new avenue to develop high-capacity and durable cathodes for lithium-ion batteries.  相似文献   

15.
High-capacity cathodes (LiNi0.8Mn0.1Co0.1O2, NMC811) are promising for vehicle electrification because of their high gravimetric energy density. However, their electrochemical performance still relies upon the stability of the cathode electrolyte interphase (CEI). A highly reactive cathode interface leads to parasitic side reactions with electrolytes, resulting in accelerated capacity fading. Well-developed LiF and LiF-like inorganic compounds are believed to be good CEI components for stabilizing such reactive electrode interfaces. However, it is challenging to form an optimal surface sub-nanolayer of LiF on the cathode surfaces because of the complexity of the electrochemical reaction during battery cycling. Herein, the formation of a conformal LiF layer on the NMC811 electrode surface via an in situ ion-exchange metathesis process is reported, demonstrating a promising electrochemical performance because of a LiF-stabilized CEI. In situ generated LiF-coated NMC811 electrodes exhibit ≈97% capacity retention up to 100 cycles at a 0.3 C rate with average coulombic efficiency of ≈99.9% and ≈80% capacity retention up to 200 cycles at a 1 C rate with average coulombic efficiency of >99.6%. This finding may pave the way for reengineering the CEI to enhance the electrochemical performances and cycling stability of the high-capacity cathodes.  相似文献   

16.
Solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) with optimized components and structures are considered to be crucial for lithium-ion batteries. Here, gradient lithium oxysulfide (Li2SOx, x = 0, 3, 4)/uniform lithium fluoride (LiF)-type SEI is designed in situ by using hexafluoroisopropyl trifluoromethanesulfonate (HFPTf) as electrolyte additive. HFPTf is more likely to be reduced on the surface of Li anode in electrolytes due to its high reduction potential. Moreover, HFPTf can make Li+ desolvated easily, leading to the increase in the flux of Li+ on the surface of Li anode to avoid the growth of Li dendrites. Thus, the cycling stability of Li||Li symmetric cells is improved to be 1000 h at 0.5 mA cm−2. In addition, HFPTf-contained electrolyte could make Li||NCM811 batteries with a capacity retention of 70% after 150 cycles at 100 mA g−1, which is attributed to the formation of uniform and stable CEI on the cathode surface for hindering the dissolvation of metal ions from the cathode. This study provides effective insights on the strong ability of additives to adjust electrolytes in “one phase and two interphases” (electrolyte and SEI/CEI).  相似文献   

17.
用户界面是计算机软件和用户交互的接口,是控制和选择信息输入/输出的主要途径,也是衡量软件质量的一个重要标准.首先介绍了用户界面与用户界面设计的原则及工作流程(分为结构设计、交互设计、视觉设计3个部分),然后探讨本地计费帐务系统中用户界面设计的实现,主要是应用系统的窗口、菜单及各种控件等的设计方法.最后介绍一种通过用户对象定义状态栏的方法.  相似文献   

18.
介绍了逆变电源建模的一般方法,探讨了系统的稳定性,并结合常用补偿网络对系统进行改进,对一般的逆变电源系统有一定的实用性和可操作性。  相似文献   

19.
Sodium-ion batteries (SIBs) suffer from severe capacity decay as the harmful substances caused by the violent decomposition of electrolyte under high voltages continue to erode the cathodes. Therefore, the design of high-voltage electrolyte and construction of robust cathode–electrolyte interface (CEI) are critical for long-life SIBs. Herein, an electrically coupled composite electrolyte that takes the merits of cross-linked gel polymers and s well-tuned antioxidant additive (4-trifluoromethylphenylboronic acid, TFPBA) is proposed. Through an electrical coupling effect, TFPBA can be anchored by the cross-linked polymer framework to immobilize the PF6 anion and adsorb onto cathode surface spontaneously, both of which promote the formation of a robust CEI layer to facilitate Na+ transportation and suppress subsequent side reactions and corrosive cracking. As a result, the cells integrating high-voltage P2/O3 cathode and well-tailored gel polymer electrolyte achieve stable cycling over 550 cycles within 1.8–4.2 V with a capacity retention of 71.0% and a high-rate discharge capacity of 77.4 mAh g−1 at 5 C. The work paves the way for the development of functionalized quasi-solid electrolyte for practical next generation high-voltage SIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号