首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The inhibition of corrosion of steel by two P-containing compounds, sodium methyldodecyl phosphonate and sodium methyl (11-smethacryloyloxyundecyl) phosphonate, in hydrochloric acid has been investigated at various temperatures using electrochemical techniques (impedance spectroscopy (EIS), potentiodynamic polarization) and weight loss measurements. Inhibition efficiency (E%) increased with phosphonate concentration. Adsorption of inhibitors on the steel surface in 1 M HCl follows the Langmuir isotherm model. EIS measurements showed that the dissolution process of steel occurred under activation control. Polarization curves indicated that inhibitors tested acted as cathodic inhibitors. The temperature effect on the corrosion behavior of steel in 1 M HCl without and with the inhibitor was studied in the temperature range from 313 to 353 K. The adsorption free energy and activation parameters for the steel dissolution reaction in the presence of phosphonates were determined.  相似文献   

2.
Three new gemini surfactants in the series of alkanediyl-α,ω-bis-(dimethylalkyl ammonium bromide) were synthesised and tested as corrosion inhibitors of iron in hydrochloric acid medium using gravimetric, electrochemical polarisation and electrochemical impedance spectroscopy (EIS) measurements. Results obtained show that the surfactants studied are good cathodic inhibitors and act on the cathodic hydrogen reaction without modifying its mechanism. EIS results show that the changes in the impedance parameters (RT and Cdl) with concentration of surfactants studied is indicative of the adsorption of molecules of surfactant leading to the formation of a protective layer on the surface of iron. The effect of the temperature on the iron corrosion in both 1 M HCl and 1 M HCl with addition of various concentrations of 1,2-ethane bis-(dimethyl tetradecyl ammonium bromide) in the range of temperature 20–60 °C was studied. The associated apparent activation corrosion energy has been determined.  相似文献   

3.
The effect of some low molecular weight straight-chain diamines to inhibit the corrosion of SS type 304 in 1 M HCl solution is examined by weight loss and galvanostatic polarization techniques. The inhibition efficiency increases with increasing the number of carbon atoms in the chain up to 8 carbons, but at higher than 8 carbon atoms (12 carbons) it decreases again. These diamine compounds act as mixed-type inhibitors, but the cathode is more polarized than the anode when an external current was applied. The corrosion rate in the presence of the investigated diamine compounds was found to increase with increasing the temperature and decrease with increasing the concentration of these compounds. Activation parameters for the corrosion of SS in 1 M HCl were calculated and showed that corrosion was much reduced in the presence of inhibitors. The adsorption of these compounds on SS from 1 M HCl solution obeys the Langmuir adsorption isotherm. The synergistic effect of KI on the inhibitive efficiency of the investigated diamine compounds was also studied.  相似文献   

4.
The inhibitory activity of some o-substituted anilines on iron corrosion in hydrochloric acid (HCl) was studied in relation to inhibitor concentration using potentiodynamic and electrochemical impedance spectroscopy (EIS) measurements. O-substituted anilines were found to act as mixed type inhibitors. The results showed that o-substituted anilines suppressed both cathodic and anodic processes of iron corrosion in 1 M HCl by its adsorption on the iron surface according to Langmuir adsorption isotherm. Potentiodynamic and EIS measurements reveal that these compounds inhibit the iron corrosion in 1 M HCl and that the efficiency increases with increasing of the inhibitor concentration. Data obtained from EIS are analyzed to model the corrosion inhibition process through equivalent circuit.  相似文献   

5.
The acid corrosion inhibition process of mild steel in 1 M HCl by 1-butyl-3-methylimidazolium chlorides (BMIC) and 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4) has been investigated using electrochemical impedance, potentiodynamic polarization and weight loss measurements. Potentiodynamic polarization studies indicate the studied inhibitors are mixed type inhibitors. For both inhibitors, the inhibition efficiency increased with increase in the concentration of the inhibitor and the effectiveness of the two inhibitors are in the order [BMIM]HSO4 > BMIC. The adsorption of the inhibitors on mild steel surface obeyed the Langmuir's adsorption isotherm. The effect of temperature on the corrosion behavior in the presence of 5 × 10−3 M of inhibitors was studied in the temperature range of 303-333 K. The associated activation energy of corrosion and other thermodynamic parameters such as enthalpy of activation (ΔH), entropy of activation (ΔS), adsorption equilibrium constant (Kads) and standard free energy of adsorption (ΔGads) were calculated to elaborate the mechanism of corrosion inhibition.  相似文献   

6.
The inhibition of pure iron in 1 M HCl by new synthesised pyridazine compounds has been studied by weight loss, electrochemical polarisation and electrochemical impedance spectroscopy (EIS) measurements. The results obtained reveal that these compounds are efficient inhibitors. The inhibition efficiency increases with the increase of inhibitor concentration and reached 98% at 10−4 M for 5-benzyl-6-methyl pyridazine-3-thione. Potentiodynamic polarisation studies clearly reveal that the presence of pyridazines does not change the mechanism of hydrogen evolution and that they act essentially as cathodic inhibitors. The temperature effect on the corrosion behaviour of pure iron in 1 M HCl without and with the pyridazines at 10−4 M was studied in the temperature range from 298 to 353 K. EIS measurements show that the increase of the transfer resistance with the inhibitor concentration.  相似文献   

7.
Cold plasma nitriding treatment was performed to improve the corrosion resistance of C38 carbon steel. Nitriding process was conducted using a radiofrequency nitrogen plasma discharge for different times of treatment on non-heated substrates. The modification of the corrosion resistance characteristic of the C38 steel due to the treatment in acid medium (1 M HCl) were investigated by gravimetric and electrochemical tests such as potentiodynamic polarisation curves and electrochemical impedance spectroscopy (EIS). It was shown that the plasma nitriding treatment improves the corrosion resistance. Indeed, in the gravimetric tests, nitrided samples showed lower weight loss and lower corrosion rate in comparison to untreated one. In the Tafel polarisation tests, the nitrided samples showed greatly reduced corrosion current densities, anodic dissolution and also retarded the hydrogen evolution reaction. Using EIS method, an adequate structural model of the interface was used and the values of the corresponding parameters were calculated and discussed. The results obtained from weight loss and electrochemical studies were in reasonable agreement. X-ray photoelectron spectroscopy (XPS) was carried out to establish the mechanism of corrosion inhibition of nitrided C38 steel in 1 M HCl medium. The enhancement of the corrosion resistance is believed to be related to the iron nitride compound layer formed on the C38 steel surface during plasma nitriding, which protected the underlying metal from corrosive attack in the aggressive solutions.  相似文献   

8.
The inhibiting effect of two organic copolymers namely poly(vinyl caprolactone-co-vinyl pyridine) (PVCVP) and poly(vinyl imidazol-co-vinyl pyridine) (PVIVP) on the corrosion of steel in phosphoric acid was investigated at various temperatures. The study was carried out by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. Inhibition efficiency (E %) increased with polymer concentration to attain 85% at 10−4 M for PVIVP. Adsorption of polymers on the steel surface in 2 M H3PO4 followed the Langmuir isotherm model. EIS measurements show that the dissolution of steel occurs under activation control. Polarisation curves indicate that the tested polymers functioned as cathodic inhibitors. E % values obtained from various methods used are in good agreement with each other. The temperature effect on the corrosion behaviour of steel in 2 M H3PO4 in the presence and absence of the inhibitor was studied in the temperature range 298–338 K. The adsorption free energy (ΔG o ads) and the activation parameters (E a, , ΔS o a) for the steel dissolution reaction in the presence of polymer were determined.  相似文献   

9.
A comparative study of 5-amino-1,2,4-triazole (5-ATA), 5-amino-3-mercapto-1,2,4-triazole (5-AMT), 5-amino-3-methylthio-1,2,4-triazole (5-AMeTT) and 1-amino-3-methylthio-1,2,4-triazole (1-AMeTT) as inhibitors for mild steel corrosion in 0.1 M HCl solution at 20 °C was carried out. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were applied to study the metal corrosion behaviour in the absence and presence of different concentrations of these inhibitors under the influence of various experimental conditions. Measurements of open circuit potential (OCP) as a function of time till reaching the steady-state potentials (Est) were also established. The studies have shown that 5-AMT was the most efficient inhibitor reaching values of inhibition efficiency (IE%) up to 96% at a concentration of 10−3 M. Polarization curves showed that the four studied compounds act as mixed inhibitors. The potential of zero charge (PZC) of mild steel was determined in 0.1 M HCl in the absence and presence of the studied inhibitors. The effect of chemical structure of the four tested inhibitors was discussed. Results obtained from OCP versus time, polarization and impedance measurements are in good agreement.  相似文献   

10.
The effect of three antibacterial drugs (3-thiazinonyl-bicyclo [4.2.0] octene-carboxylate derivatives) on the corrosion behavior of stainless steel type 304 in 1.0 M HCl solution has been investigated using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiency increased with increase in inhibitor concentration but decreased with increase in temperature. The thermodynamic functions of corrosion and adsorption processes were evaluated. The potentiodynamic polarization measurements indicated that the inhibitors are of mixed type. The adsorption of these inhibitors was found to obey Langmuir’s adsorption isotherm. Synergism between iodide ion and inhibitors was proposed. The inhibitive action was satisfactory explained by using both thermodynamic and kinetic models. The results obtained from the three different techniques were in good agreement.  相似文献   

11.
Corrosion in carbon steel units of chemical, petrochemical and oil and gas plants poses safety and economic concerns. The goal of our study is to investigate the corrosion inhibition effectiveness of an environmentally benign surfactant, namely sodium lauroyl lactylate (SLL), in comparison to sodium cocoyl glutamate (SCG) and sodium dodecyl sulfate (SDS). The corrosion of carbon steel in 1 M HCl was markedly inhibited by 0.05 and 0.1 M of the anionic surfactant SLL, as determined from weight loss over 96 h, at ambient conditions. X-ray photoelectron spectroscopy (XPS) showed that SLL adsorbed at the carbon steel surface, forming a protective film that decreased corrosion. Scanning electron microscopy (SEM) showed that carbon steel surfaces immersed in 1 M HCl for 96 h had an etched appearance without SLL, whereas they retained their smoothness with 0.1 M SLL. Electrochemical impedance spectroscopy (EIS) measurements confirmed that SLL passivated carbon steel surfaces, markedly increasing the polarization resistance Rp from ≈95 to ≈20,694 Ω cm2 over a 12 h period. In contrast, without SLL, Rp decreased from ≈92 to ≈12 Ω cm2. These results demonstrate for the first time that the environmentally friendly surfactant SLL is an efficient corrosion inhibitor in extreme environments such as 1 M HCl solutions. Dissimilar to SLL, SCG and SDS were not effective in inhibiting corrosion.  相似文献   

12.
The influences of Polycarpaea corymbosa (PC) and Desmodium triflorum (DT) leaf extracts on the corrosion behavior of mild steel (MS) in 1.0 M HCl was investigated by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The effect of temperature on the corrosion behavior of MS in 1.0 M HCl with the addition of plant extracts was studied in the temperature range of 300 K–320 ± 1 K. The results revealed that PC and DT were excellent green inhibitors and the inhibition efficiencies obtained from weight loss and electrochemical experiments were in good agreement. Inhibition efficiencies up to 91.78 % for PC and 92.99 % for DT were obtained. Potentiodynamic polarization studies revealed that both the inhibitors behaved as mixed‐type inhibitors. Adsorption behavior of these green inhibitors on the MS surface was found to obey the Langmuir adsorption isotherm. The thermodynamic parameter values of free energy of adsorption (?Gads) and enthalpy of adsorption (?Hads) revealed that each inhibitor was adsorbed on the MS surface via both chemisorption and physisorption mechanisms. The adsorption mechanism of inhibition was supported by FT–IR, UV–Visible, WAXD and SEM–EDS.  相似文献   

13.
The inhibition performance of three triazole derivatives on mild steel in 1 M HCl were tested by weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The adsorption behavior of these molecules at the Fe surface was studied by the molecular dynamics simulation method and the quantum chemical calculations. Results showed that these compounds inhibit the corrosion of mild steel in 1 M HCl solution significantly. Molecular simulation studies were applied to optimize the adsorption structures of triazole derivatives. The iron/inhibitor/solvent interfaces were simulated and the charges on the inhibitor molecules as well as their structural parameters were calculated in presence of solvent effects. Aminotriazole was the best inhibitor among the three triazole derivatives (triazole, aminotriazole and benzotriazole). The adsorption of the inhibitors on the mild steel surface in the acid solution was found to obey Langmuir's adsorption isotherm.  相似文献   

14.
The inhibition effect of ceftobiprole against the corrosion of mild steel in 1 M HCl solution was studied by weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and atomic force microscopy techniques. Inhibition efficiency increased with inhibitor concentration where as decreased with acid concentration. Data obtained from EIS studies were analyzed to model the corrosion inhibition process through appropriate equivalent circuit models. The adsorption of ceftobiprole obeyed Langmuir adsorption isotherm. Both thermodynamic and activation parameters were calculated and discussed. Polarization curves indicated that they are mixed type of inhibitors. Polarization curves showed that ceftobiprole act as mixed-type inhibitor. The results obtained from weight loss, EIS and Potentiodynamic polarization are in good agreement.  相似文献   

15.
The inhibition effect of all the three Mannich bases against the corrosion of mild steel in 1 M HCl solution was studied by weight loss, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, and atomic force microscopy techniques. Data obtained from EIS studies were analyzed to model the corrosion inhibition process through appropriate equivalent circuit models. The adsorption of Mannich bases obeyed Langmuir adsorption isotherm. Both thermodynamic and activation parameters were calculated and discussed. Polarization curves indicate that they are mixed type of inhibitors. All the Mannich bases were adsorbed physically at lower concentration, whereas chemisorption was favored at higher concentration. The results obtained from weight loss, EIS, and Potentiodynamic polarization are in good agreement.  相似文献   

16.
An example of a new class of corrosion inhibitors, namely, 2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole (DAPT) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M HCl and 0.5 M H2SO4 at 30 °C was investigated by various corrosion monitoring techniques. A preliminary screening of the inhibition efficiency was carried out using weight loss measurements. At constant acid concentration, inhibitor efficiency increases with concentration of DAPT and is found to be more efficient in 0.5 M H2SO4 than in 1 M HCl. Potentiostatic polarization studies showed that DAPT is a mixed-type inhibitor. The effect of temperature on the corrosion behaviour of mild steel in 1 M HCl with addition of DAPT was studied in the temperature range from 25 to 60 °C. Its was shown that adsorption is consistent with the Langmuir isotherm for 30 °C. The negative free energy of adsorption in the presence of DAPT suggests chemisorption of thiadiazole molecules on the steel surface.  相似文献   

17.
Epoxy-poly p-phenylendiamine (EP/PpPDA) and its nanocomposite with SiO2 nanoparticles (EP/PpPDA/SiO2) were synthesized and tested as potential corrosion inhibitors of steel in 1 M HCl solution. Performance of EP/PpPDA/SiO2 and EP/PpPDA coatings on protection of steel against corrosion was investigated using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Atomic force microscopy (AFM) and at various temperatures between 298 and 328 K. Changes in the coating resistance and charge-transfer resistance with temperature were analyzed to determine the activation energies of the processes involved. The determined values of activation energy showed that the EP/PpPDA/SiO2 coating has better anti-corrosion effect than EP/PpPDA. The thermodynamic functions of dissolution processes were also calculated and discussed. The results from AFM observations indicated that the presence of SiO2 nanoparticles increased the roughness of Epoxy-poly p-phenylendiamine/SiO2 nanocomposite (EP/PpPDA/SiO2). It was finally concluded that the presence of silica nanoparticles enhance the protection properties of EP/PpPDA coating as a novel potential corrosion inhibitor for steel.  相似文献   

18.
The influence of 1(2E)-1-(4-aminophenyl)-3-(2-thienyl)prop-2-en-1-one (ATPI) on the corrosion behavior of weld aged maraging steel in 1.5 M hydrochloric acid was studied by potentiodynamic polarization method and AC impedance (EIS) technique at different temperatures. The results showed that the inhibition efficiency of ATPI increased with the increase in the concentration of inhibitor and decreased with the increase in temperature. ATPI acts as a mixed type inhibitor without affecting the mechanism of the hydrogen evolution reaction or iron dissolution. The adsorption of ATPI on a weld aged maraging steel surface obeys the Langmuir adsorption isotherm equation. Both activation and thermodynamic parameters were calculated and discussed. ATPI inhibits the corrosion through both physisorption and chemisorption on the alloy surface. The surface morphology of the weld aged maraging steel specimens in the presence and the absence of the inhibitors was studied by the respective SEM images.  相似文献   

19.
Aniline derivatives, namely 2-chloroaniline, 2-fluoroaniline, 2-aminophenetole, 2-ethylaniline, o-aminoanisole and o-toluidine were studied for their possible use as copper corrosion inhibitors in 0.5 M HCl. These compounds were studied in concentrations from 10−3 to 10−4 M at temperature 298 K. Effectiveness of these compounds was assessed through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. These compounds inhibit the corrosion of copper in HCl solution to some extent. In each case, inhibition efficiencies increase with increasing concentration. A suggested model for the interface as well as some kinetic data is presented. These inhibitors obey the Temkin adsorption isotherm. A correlation between structure and inhibition efficiencies is suggested.  相似文献   

20.
In order to enhance the solubility of chitosan in water and its corrosion inhibition performance on Q235 steel in 1 M HCl solution, N‐vanillyl‐O‐2′‐hydroxypropyltrimethylammonium chloride chitosan (VHTC) was synthesized. The structure of VHTC was characterized by FT‐IR and 1H‐NMR spectroscopy. The corrosion inhibition performance of VHTC on Q235 steel in 1 M HCl solution was studied by weight loss, polarization, electrochemical impedance spectroscopy (EIS) and stereo microscope analysis. Experimental results indicate that VHTC shows better inhibition efficiency compared to chitosan. When the concentration of VHTC increases to 200 mg L?1, the inhibition efficiency reaches 90 %, which is almost equal to the conventional corrosion inhibitors (e.g., imidazoline). The polarization study demonstrates that VHTC is a mixed‐type inhibitor caused by a geometrical blanketing effect. The charge transfer resistance is proportional to the inhibitor concentration as revealed by the EIS results, indicating that the protective film on the Q235 steel surface is formed by adsorption of the inhibitor molecules. The inhibition efficiency of VHTC achieves the maximum value within 24 h when the concentration of VHTC is 200 mg L?1. The morphology observation of the corroded steel surface indicates that the corrosion of Q235 steel in 1 M HCl solution is significantly inhibited after introducing VHTC into the acidic solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号