首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
分别用3Ti-Al-2C和2TiC-Ti-Al粉用原位热压技术制备Ti3AlC2陶瓷.采用XRD、DTA、SEM等测试手段研究其物相组成、反应过程及显微结构.结果表明:1300 ℃下3Ti-Al-2C体系的合成产物为层状Ti3AlC2、TiC和Al2O3相,1500 ℃下2TiC-Ti-Al体系的合成产物基本为层状Ti3AlC2相,纯度较高.在Ti-Al-C体系中,首先发生Ti与C反应生成TiC,接着发生Ti与Al反应相继生成TiAl3和TiAl,随后发生TiAl和TiC反应生成Ti2AlC,最后Ti2AlC和TiC反应生成Ti3AlC2.同时,分析了TiC掺杂对TiC-Ti-Al体系原位合成Ti3AlC2的影响.  相似文献   

2.
热压烧结燃烧合成Ti3AlC2粉体的研究   总被引:1,自引:0,他引:1  
以燃烧合成Ti3AlC2粉体为原料,研究了不同热压温度下Ti3AlC2粉体的热压烧结过程。实验结果表明,热压烧结Ti3AlC2粉体可得到Ti3AlC2致密块体陶瓷,Ti3AlC2粉体的热压烧结活性比直接使用Ti、Al(或Al4C3)和C为原料热压烧结的活性高,热压烧结温度以1400-1500℃之间为佳:烧结温度为1450℃,压力25MPa,Ar保护,保温2h的条件下,烧结Ti3AlC2粉体可得理论相对密度为99.05%,维氏硬度2.8GPa,抗弯强度426.02MPa,断裂韧性10.08MPa·m^1/2的烧结块体;烧结样品的密度和断裂韧性随烧结温度升高而增大,抗弯强度在高于1400℃时随热压温度升高而降低。  相似文献   

3.
添加TiAl对燃烧合成Ti3AlC2粉体的影响   总被引:4,自引:0,他引:4  
采用Ti,Al和C粉末为反应物原料,研究了添加金属间化合物TiAl对燃烧合成Ti3AlC2的影响。从动力学和热力学的角度探讨了TiAl对燃烧合成Ti3AlC2的影响机理。实验结果表明,仅以单质粉末Ti,Al和碳黑为原料,按Ti3AlC2化学计量比配料,燃烧产物的主要物相是TiC,只能得到少量Ti3AlC2相,但在保持原料配比不变的情况下,在反应物原料中添加金属间化合物TiAl(20%-35%)(质量百分数)后,燃烧合成产物中Ti,AlC2的含量显著增加,成为燃烧产物的主要物相,而TiC的含量则显著减少。燃烧产物中Ti3AlC2的含量随添加TiAl量的增加而显著增多。  相似文献   

4.
热压烧结Ti3AlC2材料的制备、结构与性能研究   总被引:3,自引:0,他引:3  
采用热压工艺研究了不同工艺制度和原料中不同的Si含量对Ti3AlC2合成的影响.研究表明在1 300℃~1 500℃,30MPa压力和Ar气氛中热压摩尔比为n(TiC)n(Ti)n(Al)n(Si)=2110.2的混合粉末,可以得到纯度达98%(质量分数)以上的致密块体Ti3AlC2材料;添加的Si均匀分布在基体中,形成固溶体,当添加Si的摩尔比为0.2时,固溶体的化学式为Ti2 76Al0 78Si0.22C2.烧结试样的晶体为层片状结构,1 300℃和1 400℃时,烧结试样的晶粒尺寸分别为10μm~15μm和20μm~30μm.材料的维氏硬度为3.3 GPa~5.0 GPa,弹性模量为289 GPa,抗压强度为785 MPa,抗弯强度为375 MPa,断裂韧性为7.0 MPa·m1/2;25℃时,电导率为3.1×106 S·m-1,热容为125.4 J/mol·K,热导率为27.5 W/m·K;热膨胀系数为8.8×10-6 K-1.  相似文献   

5.
采用放电等离子烧结(SPS)系统对含有TiC等杂质相的机械合金化(MA)合成的Ti3AlC2粉体进行热处理,研究了热处理温度对粉体中Tti3AlC2纯度的影响.结果表明:SPS无压加热处理可以显著提高机械合金化合成粉体中Ti3AlC2的含量.经SPS热处理的粉体中Ti2AlC2的含量在600~1000℃范围内随热处理温度的提高而增加,温度不高于900℃时处理后的粉体还基本保持粉体特征.当温度为1000℃时,得到产物中Ti3AlC2纯度可达到93%.通过对点阵常数测定可知随着热处理温度的提高Ti3AlC2点阵常数逐渐接近理论值.  相似文献   

6.
放电等离子(SPS)快速烧结可加工陶瓷Ti3AlC2   总被引:5,自引:0,他引:5  
利用放电等离子烧结技术研究了SHS的Ti3AlC2粉体的烧结过程。烧结温度1450℃,压力20MPa,真空烧结,保温5min,可获得相对密度达98.4%的致密烧结体,HV可达3.8GPa;烧结温度为l500℃,则可获得完全致密的烧结体,HV可达4.2GPa;烧结体的维氏硬度随烧结温度(1300℃~1500℃)的升高而增大;SEM分析表明,SPS技术烧结制备的Ti3AlC2陶瓷,片层大小随烧结温度的升高而增大。  相似文献   

7.
以Ti,Al,C和TiC粉末为原料,研究了钛碳摩尔比和Al含量对Ti—Al—C体系燃烧合成产物相组成的影响。实验表明,不同的钛碳摩尔比和Al含量变化,对Ti-Al—C体系燃烧合成Ti3AlC2粉体有很大影响。当Ti/C=1或1.5时,燃烧产物主晶相是TiC,与原料中Al含量变化关系不大;Ti/C=2和Ti/C=3时,主晶相分别是Ti3AlC2和Ti2AlC,它们的衍射峰强度均分别随原料中Al含量增加而增强,当Al含量增加到一定量后,Ti3AlC2和Ti2AlC的衍射峰强度均又减弱;TiC是Ti-Al-C体系燃烧合成Ti3AlC2相的中间产物。  相似文献   

8.
原位热压反应制备Ti3AlC2/TiB2复合材料   总被引:1,自引:0,他引:1  
Ti3AlC2综合了陶瓷和金属的诸多优点,有着潜在的广泛应用前景。然而,单相Ti3AlC2的硬度和强度偏低,限制了它的广泛应用。引入第二相形成复合材料是解决上述问题的一个有效方法。以Ti粉、Al粉、石墨和B4C粉为原料采用原位热压方法成功地合成了Ti3AlC2/TiB2复合材料。利用DSC和XRD对其反应路径作了详细研究,并利用SEM和TEM对复合材料的微观结构进行了表征,最后测试了复合材料的硬度和强度。结果表明用B4C-Ti-Al-C体系,可以在较低温度下合成致密的无杂质Ti3AlC2/TiB2复合材料;引入的TiB2明显提高了Ti3AlC2的硬度和强度。  相似文献   

9.
以Ti粉、Si粉、铝粉、石墨为原料,在1600℃热压烧结制得试样,对不同配比Ti3SiC2、Ti3AlC2复相材料在1100~1500℃下恒温氧化20h的氧化行为进行研究.结果表明:热压法制备Ti3SiC2、Ti3AlC2复相材料在高温下具有比Ti3SiC2和Ti3AlC2更优良的高温抗氧化性能;由于试样氧化过程中产生了TiO2、SiO2、Al2TiO5和α-Al2O3,可有效提高试样的高温抗氧化能力.  相似文献   

10.
Ti-Al-C体系中添加TiAl3对燃烧合成 Ti3AlC2粉体的影响   总被引:3,自引:0,他引:3  
以单质粉末Ti,Al和碳黑为原料,按Ti3AlC2化学计量比配料,燃烧产物主要物相是TiC1,只能得到少量Ti3AlC2相,但在保持原料配比不变的情况下,在反应物原料中添加金属间化合物TiAl3(质量分数为0-23.5%),燃烧产物中Ti3AlC2的含量随添加TiAl3量的增加而显著增多,成为燃烧产物的主要物相。从热力学和动力学的角度探讨了TiAl3对燃烧合成Ti3AlC2的影响机理。  相似文献   

11.
为了研究添加少量Al对反应速度和产物纯度的影响,以Ti/Si/TiC/Al=2:2:3.5:x(x=0,005,0.1,0.15,0.20,0.25)的混合粉末为原料,在1100~1500℃用无压反应烧结方法制备了Ti3SiC2粉末.并用XRD、SEM及EDS对其进行分析.结果表明,添加适量的Al能加速Ti3SiC2粉未的合成,产物纯度显著增加,最高产物纯度可达99.37wt%,可以使获得单相Ti3SiC2粉末的烧结温度由1500℃降到1400℃.反应的机理在于Al能脱除体系中残留的氧,并且尽早形成液相,取代部分Si在M3AX2相中的位置,从而加速Ti3SiC2粉末的合成.  相似文献   

12.
本文以Cr、Al和C粉为原料,采用无压烧结合成了纯相的Cr_2AlC粉体。研究了烧结温度对合成物相的影响,得出最佳烧结温度为1400℃。分析反应路径,发现Al先熔化成Al液,同时引发Cr和Al反应生成Cr2Al及少量Cr_2AlC。Cr-Al金属间化合物再与C和Al发生反应最终合成Cr_2AlC。掺杂Si元素后发现Cr_2AlC晶格常数变化,说明Si固溶到Cr_2AlC当中。  相似文献   

13.
以自蔓延高温合成(SHS)的Ti2AlC粉体为原料,利用放电等离子烧结技术(SPS)研究了Ti2AlC陶瓷的烧结制备。结果表明:烧结温度1250℃,压力20MPa,真空烧结,保温5min,可获得相对密度98.6%,维氏硬度为4.3GPa的致密烧结块体;烧结样品的维氏硬度随烧结温度升高而增大,但高于1250℃后随温度升高反而减小,SPS方法烧结Ti2AlC陶瓷的最佳温度为1250℃,当烧结温度≥1350℃时Ti2AlC分解;SEM分析表明,SPS技术烧结制备的Ti2AlC陶瓷片层尺寸随烧结温度的升高而增大。  相似文献   

14.
为提高AlON陶瓷材料的力学性能、降低成本,以廉价Al和Al_2O_3粉为原料,利用常压烧结方法一步原位合成了AlON陶瓷材料.研究了成分配比和烧结助剂对材料的物相组成、密度、抗弯强度和显微组织的影响.结果表明:Al与Al_2O_3的最佳质量配比为13:87.未添加烧结助剂时,材料的最高烧结密度为2.74 g/cm~3,抗弯强度为246 MPa.添加烧结助剂(SiO_2-Y_2O_3-CaF_2)以后,材料的最高烧结密度提高到3.62 g/cm~3、抗弯强度提高到321 MPa,超过热压烧结制备AlON陶瓷材料的性能.  相似文献   

15.
Si掺杂放电等离子合成Ti2AlC/Ti3AlC2材料及理论分析   总被引:4,自引:0,他引:4  
以Ti粉、Al粉、活性炭和Si粉为原料,采用放电等离子工艺分别以摩尔比为2.0Ti/1.1Al/1.0C、2.0Ti/1.0Al/0.1Si/1.0C、2.0Ti/1.0Al/0.2Si/1.0C、2.0Ti/0.9Al/0.2Si/1.0C和2.0Ti/1.0Al/0.3Si/1.0C,在1 200 ℃合成了Ti2AlC/Ti3AlC2块体材料.通过合成试样的X射线衍射谱,确定了放电等离子合成试样的物相组成,并用扫描电镜结合能谱仪观察了合成试样的显微结构和微区成分.结果表明:以2.0Ti/1.1Al/1.0C为原料放电等离子合成了层状结构明显的Ti2AlC材料;掺Si后所有试样都由Ti2AlC、Ti3AlC2和Ti3SiC2 3种物相组成;当掺Si量逐渐增大,即Al与Si的量比减小时,试样中Ti3AlC2和Ti3SiC2的含量增加,而Ti2AlC的含量降低,同时颗粒得到细化.应用量子化学计算结果解释了掺Si后不利于Ti2AlC的生成,而有利于Ti3AlC2的生成机理,说明了掺Si后固溶体的产生过程.  相似文献   

16.
经过2,5,7,9 kV放电电压作用后,分析了受电弓材料Ti3AlC2和Cu-Ti3AlC2的电弧烧蚀性。Cu-Ti3AlC2材料的电弧寿命和击穿电流都比Ti3AlC2的低。用高速摄影机记录2种材料的电弧形态。结果表明,Ti3AlC2上的电弧要比Cu-Ti3AlC2的电弧更加集中,伴随着更多的液滴飞溅。采用扫描电镜(SEM)观察了被侵蚀的2种材料表面情况。和Cu-Ti2AlC2的表面相比,Ti3AlC2的表面更加不均匀,表面覆盖有"孔洞","显微裂纹"和"飞溅物"。计算了不同电压下的电弧能量,在相同电压下,Cu-Ti3AlC2材料的电弧能量小于Ti3AlC2材料。采用拉曼光谱法测定了被烧损样品表面的成分。实验表明,Cu-Ti3AlC2更适合于做受电弓材料。  相似文献   

17.
机械合金化制备Ti3AlC2陶瓷材料的研究   总被引:1,自引:0,他引:1  
采用Ti,Al和C元素粉末为反应物原料,通过机械合金化法成功地制备出高含量三元碳化合物Ti3AlC2陶瓷粉体.按Ti3AlC2化学计量比为起始反应原料配比(Ti∶Al∶C=3∶1∶2)的元素混合粉末,经3 h的机械合金化后,Ti、Al和C单质混合粉末发生化学反应,生成以Ti3AlC2为主晶相,并含有少量TiC的混合粉体和小块体;粉体中Ti3AlC2的含量达到83%(质量分数,下同).产物合成的原因是在Ti-Al-C体系中发生了一种机械诱发自蔓延反应.  相似文献   

18.
李新 《热加工工艺》2013,42(4):74-75,79
采用3TiC/Si/0.2A1粉体为原料,通过无压烧结反应合成了片状TiC晶粒.采用XRD、SEM和EDS对试样的物相组成、微观形貌和微区成分进行分析.结果表明,在1100~1200℃、保温2h,原料反应合成了主相Ti3SiC2,同时含有少量TiC、SiC相;当温度为1300℃时,Ti3SiC2开始明显分解;当温度升至1350℃时,试样中Ti3SiC2完全分解,产物主要由TiC相和少量SiC组成;六方TiC晶粒边长5μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号