首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用Gleeble-3500热模拟机对镍基617合金进行等温热压缩试验,获得了不同变形条件下该合金的真应力-真应变曲线,并对压缩试样的微观组织进行分析。通过对试验数据的计算,得到了镍基617合金的动态再结晶激活能和本构关系方程;建立了动态再结晶图,获得了镍基617合金发生动态再结晶所需的临界变形量与Z参数的关系。结果表明,变形参数对镍基617合金热变形后的显微组织具有重要影响,较高的变形温度和较低的应变速率有利于动态再结晶的发生。  相似文献   

2.
采用Gleeble-3500热压缩实验机对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度360~480℃、应变速率0.001~1 s-1、最大变形程度为60%的条件下进行高温压缩实验研究。分析了应变速率和变形温度对该合金在高温变形时流变应力的影响,引入温度补偿应变速率因子Z构建合金高温流变应力的本构方程;研究了合金在不同压缩条件下的组织变化及动态再结晶晶粒尺寸,为后续有限元组织模拟提供了实验依据。结果表明:该合金的真应力-真应变曲线具有动态再结晶曲线的特征。动态再结晶的再结晶晶粒尺寸随温度的降低、应变速率的增大而减小;而且峰值应力也随再结晶晶粒尺寸的减小而增大。  相似文献   

3.
采用Thermecmastor-Z热模拟试验机在变形温度为200~520℃、应变速率为2~60 s-1条件下对AZ31B镁合金厚板进行热压缩变形试验,压缩变形量为60%。结合变形后的微观组织以及热压缩真应力-真应变曲线,分析应变速率和变形温度等工艺参数对其微观组织演变的影响。结果表明:当变形温度高于320℃时,AZ31B镁合金的真应力-真应变曲线呈现典型的动态再结晶特性。当应变速率一定时,流变应力随温度升高而降低;当变形温度一定时,流变应力在高温低应变速率(低于15 s-1)下随应变速率增大而增大。变形后的微观组织显示,压缩变形过程中发生了明显的动态再结晶,动态再结晶体积分数随应变速率的增加而增大。另外,变形组织的均匀性受变形温度的影响十分显著。在热压缩实验的基础上,在温度为300~330℃时对板材进行单道次大压下量的热轧,获得的板材具有均匀细小的晶粒及优异的力学性能。  相似文献   

4.
利用Gleeble-3500在变形温度为600~900℃,应变率为0.001~1 s~(-1)下,对TiNiCr合金进行压缩,对真应力-应变曲线和压缩后试样的显微组织进行分析。结果表明:TiNiCr合金的真应力-应变曲线是由加工硬化效应和软化效应共同决定的,流变应力随温度的升高和应变率的减小而减小;在热压缩过程中,由于软化作用,引起加工硬化效应的位错逐渐消失,合金在不同变形条件下均出现了动态再结晶现象,再结晶机制是弓出形核;温度越高,应变率越低,TiNiCr合金动态再结晶趋势越明显,晶粒尺寸越大,软化机制越以动态再结晶为主;TiNiCr合金与传统非金属间化合物不同,只通过真应力-应变曲线不能推测其软化机制。  相似文献   

5.
热变形对耐蚀重轨钢动态再结晶及组织的影响   总被引:2,自引:0,他引:2  
高强耐蚀重轨U68CuCr是国内新近研制开发的钢轨新品种,通过在Gleeble-1500热模拟试验机上对耐蚀重轨钢进行单道次压缩试验,测定了在不同变形温度、变形量和变形速率条件下的真应力-真应变曲线,分析了热变形参数对珠光体动态再结晶行为的影响.利用金相显微镜和扫描电镜观察了不同变形条件下空冷得到的珠光体显微组织,测定了珠光体片间距和珠光体球团等显微组织参数,分析了热变形参数对珠光体组织影响的规律.研究表明:变形温度升高、变形速率降低、变形量增大的条件下,利于耐蚀重轨钢动态再结晶的发生;当变形温度和变形量一定时,变形速率越低,发生动态再结晶的可能性越大,应力峰值和临界应变减小;发生动态再结晶后得到珠光体组织,其珠光体片层间距和珠光体球团尺寸比未发生再结晶得到的珠光体更细小.  相似文献   

6.
利用Gleeble3800热模拟试验机对20Cr-25Ni-1.5Mo Nb Ti N奥氏体耐热钢在温度为930~1230℃、应变速率为0.005~5 s-1条件下进行热压缩试验,获得不同热压缩条件下的流变应力曲线,用光学显微镜观察热压缩试样的显微组织。结果表明:变形温度相同时,随应变速率增大动态再结晶程度逐渐减小,甚至完全处于加工硬化状态,其热激活能为328 k J/mol;当应变速率为5 s-1、变形温度为1130~1230℃、应变量较小时和应变速率为0.005 s-1、变形温度930~1230℃、应变量较大时,出现失稳现象;动态再结晶的临界应力与Z参数之间成线性关系,峰值应力与应变速率和变形温度也有线性关系。  相似文献   

7.
利用Gleeble-3500热/力模拟试验机进行不同变形参数(变形温度和应变速率)下的高温热模拟单向压缩试验,对得到的真应力-真应变曲线进行分析,研究了不同变形工艺参数对TC4钛合金单向压缩时真流动应力及其压缩组织的影响。通过对变形后试样的金相组织观察,研究了材料在高温变形过程中的动态再结晶和回复过程。结果表明,流变应力随着应变的增加而迅速增大至最大值,随后开始缓慢降低,最后趋于稳定。随着变形温度升高,晶界破碎化程度逐渐增大,条状组织减少,组织中的次生α相含量逐渐增加。  相似文献   

8.
用Gleeble-3500热模拟试验机对退火态纯钛试样,在变形温度298~723 K、应变速率10~(-4)~10~1s~(-1)下进行热压缩试验,研究变形温度和应变速率对其热变形行为及组织演变的影响。结果表明:纯钛的压缩行为与变形温度和应变速率存在相关性;当应变速率一定时,流变应力随变形温度的升高而减小;当变形温度一定时,流变应力随应变速率的增大而增大。显微组织观察结果显示:在低温或高应变速率下变形时,形变组织主要为大尺寸等轴晶和孪晶,随着温度的升高或应变速率的降低,再结晶晶粒逐渐增多,孪晶数量减少,直至消失。  相似文献   

9.
氮强化高锰奥氏体钢热变形行为研究   总被引:1,自引:0,他引:1  
利用Gleeble-3500热力模拟试验机在温度为1253~1423K,应变速率为0.1~10s-1的条件下对32Mn-7Cr-1Mo-0.3N奥氏体钢进行了热压缩变形试验,测定了其真应力-应变曲线,观察了变形后的组织.试验结果表明,流变应力和峰值应变随变形温度的降低和应变速率的提高而增大.真应变为0.6时,在1423K、应变速率在0.1~10s-1之间的试样均已发生完全动态再结晶;在1373K以下变形时,应变速率在0.1~10s-1之间,试样发生部分动态再结晶.动态再结晶晶粒尺寸随着变形温度的升高而增大,随着应变速率的升高而减小.32Mn-7Cr-1Mo-0.3N奥氏体钢的热变形激活能Q值为469.03kJ/mol,并获得热变形方程.  相似文献   

10.
《铸造》2017,(2)
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-Cr-Zr合金在变形温度为600~800℃、应变速率为0.01~5 s~(-1)和总压缩应变量约50%条件下的热变形行为进行了研究。利用光学显微镜观察Cu-Cr-Zr合金在不同变形温度、不同应变速率下的显微组织,分析其组织演变规律。结果表明:应变速率和变形温度的变化强烈地影响合金流变应力的大小;Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且流变应力随变形温度升高而降低,随应变速率提高而增大;在应变温度为800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程。  相似文献   

11.
在Gleeble-1500热/力机上进行了变形条件对2124铝合金超厚板流变行为与显微组织的影响规律的系列实验研究,得到了不同变形条件下2124铝合金超厚板高温压缩成形过程中的流变曲线。实验结果表明,2124铝合金在0.01s-1~1s-1范围内,高温压缩变形过程存在近稳态流变特征,近稳态流变应力随着应变速率的降低和变形温度的升高而降低。当应变速率为10s-1时,真应力-真应变曲线出现锯齿状,说明合金发生动态再结晶现象。利用OM和TEM分别研究了变形温度、应变速率、应变量对2124铝合金高温压缩变形显微组织的影响,在此基础上,分析并建立了2124铝合金热压缩变形发生动态再结晶的临界条件。  相似文献   

12.
在Gleeble 1500D热模拟试验机上,采用高温等温压缩试验对Cu-Ni-Si-P-Cr合金在应变速率为0.01~5 s 1、变形温度为600~800℃条件下的流变应力行为进行研究,利用光学显微镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Ni-Si-P-Cr合金在热变形过程中发生了动态再结晶,且根据变形温度的不同,真应力—真应变曲线的特征有所不同。流变应力随变形温度升高而降低,随应变速率提高而增大。从流变应力、应变速率和温度的相关性得出该合金热压缩变形时的热变形激活能Q和本构方程。  相似文献   

13.
在Gleeble-1500型热模拟机上对超高强Cr-Co-Mo-Ni-W不锈钢进行了等温等应变速率的热压缩试验,试验条件为900℃≤T≤1150℃、0.01s-1≤ε觶≤10 s-1。根据试验所采集的数据,绘制了高温下应力-应变关系曲线;并观察了变形后试样的显微组织;通过计算建立了材料热变形本构方程。结果表明:材料的流动应力随变形温度的升高而降低,随应变速率的增大而增大;动态回复和动态再结晶分别在材料变形的不同阶段起主导作用;超高强Cr-Co-Mo-Ni-W不锈钢的再结晶温度在1100~1150℃,其热变形激活能值为318.5 kJ/mol。  相似文献   

14.
为了研究挤压态ZK60镁合金的热变形行为,利用Gleebe-3500热模拟机在变形温度为523~723 K、应变速率为0.01~10 s~(-1)的条件下对挤压态ZK60合金进行了热压缩变形试验。通过真应力-真应变曲线分析了挤压态ZK60合金流变应力与应变速率、变形温度之间的关系,通过引入Z参数建立了挤压态ZK60合金的流变应力本构方程,并观察了其在热压缩过程中的显微组织变化。结果表明:挤压态ZK60合金的真应力-真应变曲线属于动态再结晶型,并且合金的流变应力在高变形温度或低应变速率条件下较低。在变形温度降低或应变速率升高时,动态再结晶晶粒变小,但动态再结晶进行的不充分,再结晶晶粒分布不均匀。通过本构方程计算出挤压态ZK60镁合金的变形激活能Q=122.884 k J/mol,应力指数n=5.096。  相似文献   

15.
利用Gleeble-1500D热模拟试验机,采用等温压缩试验,研究了Cu-Fe-P-Zn-Sn-Mg合金在变形温度为750~950℃、应变速率为0.01~10s-1条件下的流变应力的变化规律,测定了其真应力-应变曲线,并分析了合金在热压缩过程中的组织演变规律。结果表明,合金的真应力-应变曲线具有典型的动态再结晶特征,其流变应力随变形温度的降低以及应变速率的提高而增大,且变形温度越高、应变速率越小,合金越容易发生动态回复和再结晶。在试验基础上,计算并建立了合金热变形过程中流变应力与变形温度和应变速率之间关系的热压缩高温变形本构方程。  相似文献   

16.
采用Gleeble-1500热模拟实验机对一种新型AM80-xSr-yCa镁合金进行高温压缩变形实验,研究其在温度300℃~450℃、应变速率0.01s-1~10s-1条件下的流变行为。高应变速率下,试样的变形热带来的温升不可忽略,对真应力-真应变的测量值进行相应修正后,求得了本构方程中的系列常量。结果表明,应变速率和变形温度的变化,强烈影响着合金流变应力的大小,流变应力值随变形温度的降低和应变速率的提高而增大;金相组织观察表明,动态再结晶是该实验条件下晶粒细化和材料软化的主要机制,再结晶的程度主要受变形参数影响。变形温度越高,变形量越大,动态再结晶进行的越充分;应变速率越大,再结晶平均晶粒尺寸就越小。  相似文献   

17.
采用Gleeble-3800热模拟试验机,对Incoloy825高温合金在应变为0.92、温度为950~1150℃和应变速率为0.001~1 s-1条件下进行单道次压缩试验。依据真应力-真应变曲线建立了动态再结晶临界方程和动态再结晶动力学模型。结果表明,Incoloy825高温合金热变形对温度和应变速率较为敏感,真应力-真应变曲线整体满足硬化-软化-稳态的流变过程,动态再结晶是Incoloy 825高温合金材料的主要软化机制。在热变形过程中,动态再结晶临界应变随变形温度的升高和应变速率的降低呈减小趋势。对动态再结晶动力学模型进行分析发现,动态再结晶百分含量随变形温度的升高和应变速率的降低而增大,表明高变形温度和低应变速率对动态再结晶具有促进作用。  相似文献   

18.
采用多相场(Multi-phase-field,MPF)模型模拟动态再结晶晶粒的生长过程,并用Kocks-Mecking(KM)方程模拟其力学行为。用热力模拟机对SA508-3钢进行了不同温度和应变速率下的热压缩试验,从热压缩流动应力-应变曲线中提取SA508-3钢动态再结晶特征参数并用于计算动态再结晶模型参数。利用所得参数对SA508-3钢的动态再结晶过程进行了多相场模拟,预测了热塑性变形过程中的组织演变和真应力-真应变曲线,与试验结果吻合较好。试验和数值结果均表明,流动应力随应变速率的增大及变形温度的降低而增大。本文的方法可用于研究其它材料的动态再结晶行为,为优化热锻工艺提供指导。  相似文献   

19.
通过对410不锈钢进行热压缩试验,分析了不同变形温度及变形速率对应力应变曲线的影响,并以此为基础构建了本构方程及热加工图.发现相同应变速率的真应力应变曲线,温度越大,真应力越小.不同应变速率的流变曲线,低应变速率下,应力达到峰值后,将出现下降趋势;而高应变速率下,应力将一直升高,直到达到最大应变量时达到最高.分析热加工...  相似文献   

20.
2205双相不锈钢高温变形行为及微观组织的研究   总被引:1,自引:0,他引:1  
利用热模拟试验机Thermecmastor-E进行了950~1200℃,应变速率0.1~10 s-1、应变量10%~60%条件下2205双相不锈钢的高温压缩试验,并观察了变形组织。根据测定的真应力-真应变曲线分析了不同应变、温度条件下的热变形激活能Q及其变形机制的变化。结果表明,随应变量的增加,试验钢的表观应力指数n和热变形激活能Q随之增加;热变形机制逐渐由动态回复过渡到动态再结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号