首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The effect of matrix alloy additions on mechanical properties was examined by comparing the tensile and fatigue properties of commercially pure magnesium and ZE41A (Mg-4.25 Zn-0.5 Zr-1.25 RE) which were both reinforced with FP aluminum oxide fibers. The alloy additions were found to improve the off-axis properties but decrease the axial properties. This was brought about by an increase in the matrix and interfacial strengths and a decrease in the fiber strength. It was also determined that the reaction zone in both materials was MgO and that strengthening of the interface was due to an increased particle size and/or a thicker reaction zone and not to any segregation of alloying elements to the interface.  相似文献   

2.
A study has been made of fatigue crack growth through the magnesium alloy ZE41A and a composite of this alloy reinforced with alumina fibers. Crack growth rates were measured and failure mechanisms characterized for specimens with fibers parallel to the loading axis and for two off-axis orientations. Crack opening displacements and matrix and fiber strains in the vicinity of the crack tip were measured using the stereomaging technique. Crack growth rates through the composite were retarded by the fibers. For the composite with fibers at 22.5 deg to the loading axis, fibers were found to fracture in the composite at the same stress as measured for the fibers alone. Fiber fracture was the dominant growth-controlling mechanism for fibers oriented on and 22.5 deg to the loading axis, and little fiber pullout was observed. However, for crack growth through material with fibers oriented at 45 deg to the loading axis, crack growth was found to exist principally through the interface. Driving forces for cracks in interfaces were determined to be smaller than the applied δK. It was found that approximate fatigue crack growth rates through the composites could be predicted from those through the matrix by adjusting the tensile modulus. The upper and lower bounds of fatigue crack growth rate were also computed for the composite using a micromechanics-based model that incorporated observed failure mechanisms. A. McMINN, formerly with Southwest Research Institute, is with Failure Analysis Associates, Washington, D.C.  相似文献   

3.
Flexural fatigue behavior was investigated on titanium (Ti-15V-3Cr) metal matrix composites reinforced with cross-ply, continuous silicon carbide (SiC) fibers. The titanium composites had an eightply (0, 90, +45, -45 deg) symmetric layup. Fatigue life was found to be sensitive to fiber layup sequence. Increasing the test temperature from 24 °C to 427 °C decreased fatigue life. Interface debonding and matrix and fiber fracture were characteristic of tensile behavior regardless of test temperature. In the tensile fracture process, interface debonding between SiC and the graphite coating and between the graphite coating and the carbon core could occur. A greater amount of coating degradation at 427 °C than at 24 °C reduced the Ti/SiC interface bonding integrity, which resulted in lower tensile properties at 427 °C. During tensile testing, a crack could initiate from the debonded Ti/SiC interface and extend to the debonded interface of the neighboring fiber. The crack tended to propagate through the matrix and the interface. Dimpled fracture was the prime mode of matrix fracture. During fatigue testing, four stages of flexural deflection behavior were observed. The deflection at stage I increased slightly with fatigue cycling, while that at stage II increased significantly with cycling. Interestingly, the deflection at stage III increased negligibly with fatigue cycling. Stage IV was associated with final failure, and the deflection increased abruptly. Interface debonding, matrix cracking, and fiber bridging were identified as the prime modes of fatigue mechanisms. To a lesser extent, fiber fracture was observed during fatigue. However, fiber fracture was believed to occur near the final stage of fatigue failure. In fatigued specimens, facet-type fracture appearance was characteristic of matrix fracture morphology. Theoretical modeling of the fatigue behavior of Ti/SCS-6 composites is presented in Part II of this series of articles. This article is based on a presentation made in the symposium entitled “Creep and Fatigue in Metal Matrix Composites” at the 1994 TMS/ASM Spring meeting, held February 28–March 3, 1994, in San Francisco, California, under the auspices of the Joint TMS-SMD/ASM-MSD Composite Materials Committee.  相似文献   

4.
Spatially varied interfaces (SVIs) is a design concept for composite materials where the interface mechanical properties are varied along the length and circumference of the fiber/matrix interface. These engineered interfaces can be used to modify critical titanium matrix composite properties such as transverse tensile strength and fatigue crack growth resistance in ways that produce a balanced set of properties. The SVI approach may also be used to probe interface failure mechanisms for the purpose of understanding complex mechanical phenomena. Single lamina Ti-6Al-4V matrix composites containing strongly bonded SiC fibers were fabricated both in the as-received condition and with a weak longitudinal stripe along the sides of the fibers. The striped SVI composites exhibited an increase in the overall fatigue crack growth life of the specimens compared to the unmodified specimens. This improvement was caused by an increased extent of debonding and crack bridging in SVI composites. This article is based on a presentation made in the symposium “Fatigue and Creep of Composite Materials” presented at the TMS Fall Meeting in Indianapolis, Indiana, September 14–18, 1997, under the auspices of the TMS/ASM Composite Materials Committee.  相似文献   

5.
In the present work, the natural composites based on sugarcane bagasse fiber and/or coconut shell powder were processed using hand lay-up technique. The matrix selected was polyester. Three different types of composites were considered: polyester matrix + sugarcane fiber, polyester matrix + sugarcane fiber + metal mesh and polyester matrix + sugarcane fiber + coconut shell filler. The sugarcane fibers were used in three forms: (1) chemically treated by NaOH, (2) chemically treated by HCl, and (3) untreated condition. In total, 9 types of composites were developed and studied for tensile, flexural and impact properties. The fracture surface of the tensile and flexural test samples was examined with the aid of scanning electron microscope to understand the bonding characteristics and the mode of failure. The key-findings from the present work are: (1) the composites reinforced with the NaOH treated sugarcane fiber and the metal mesh show superior tensile and impact properties whereas the composites reinforced with the NaOH treated sugarcane fiber show the best flexural properties, (2) NaOH treatment of sugarcane fibres has a significant effect in improving the mechanical properties by surface modification of fibres through OH? functional groups. In contrast, HCl treatment of sugarcane deteriorates the surface of the sugarcane by absorbing the electrons. The damaged surface results in weak bonding causing poor mechanical properties, (3) From the SEM analysis of the surface of the sugarcane fiber, it may be concluded that the surface condition of the sugarcane fibres decide the bonding with the matrix. The fiber pull-outs and porosities are less in the NaOH treated sugarcane reinforced composites. The fiber failure is the main mechanism of failure in the tensile test whereas the fiber debonding from the matrix is the main source of failure in the flexural test.  相似文献   

6.
An STS304-continuous-fiber-reinforced Zr-based amorphous alloy matrix composite with excellent fiber/matrix interfaces was fabricated without pores and misinfiltration by liquid pressing process. Approximately 60 vol pct of continuous fibers were homogeneously distributed in the matrix, in which considerable amounts of polygonal and dendritic crystalline phases were formed by the diffusion of metallic elements from the fibers. The ductility of the composite under compressive or tensile loading was drastically improved over that of the monolithic amorphous alloy. According to the compressive test results, a strength of 700 to 830 MPa was sustained until reaching a strain of 40 pct, because fibers interrupted the propagation of shear bands initiated in the matrix and took over a considerable amount of load. Under tensile loading, the deformation and fracture occurred by crack formation and opening at matrices, necking of fibers, fiber/matrix interfacial separation, and cup-and-cone–type fracture of fibers, thereby resulting in a high tensile elongation of 27 pct.  相似文献   

7.
The mode I fatigue crack growth behavior of a fiber reinforced metal matrix composite with weak interfaces is examined. In the longitudinal orientation, matrix cracks initially grow with minimal fiber failure. The tractions exerted by the intact fibers shield the crack tip from the applied stress and reduce the rate of crack growth relative to that in the unreinforced matrix alloy. In some instances, further growth is accompanied by fiber failure and a concomitant loss in crack tip shielding. The measurements are compared with model predictions, incorporating the intrinsic fatigue properties of the matrix and the shielding contributions derived from the intact fibers. The magnitude of the interface sliding stress inferred from the comparisons between experiment and theory is found to be in broad agreement with values measured using alternate techniques. The results also indicate that the interface sliding stress degrades with cyclic sliding, an effect yet to be incorporated in the model. In contrast, the transverse fatigue properties are found to be inferior to those of the monolithic matrix alloy, a consequence of the poor fatigue resistance of the fiber/matrix interface.  相似文献   

8.
通过密炼?注塑成型工艺制备了不同苎麻纤维含量的聚乳酸基复合材料,研究了纤维含量对复合材料性能的影响规律,并揭示了纤维增强机理。研究表明,苎麻纤维的添加提高了复合材料的耐热性能,尤其是当纤维质量分数为40%时,复合材料的热变形温度提高了10.5%。此外,苎麻纤维均匀地分散在基体中,由于纤维与聚乳酸的界面强度较弱,断面上有大量的纤维拔出和纤维孔洞;差示扫描量热仪测试表明高含量的纤维限制了聚乳酸分子链的运动,促进复合材料形成更加致密完善的晶核;同时,流变行为也表明苎麻纤维含量的增加有助于提高复合材料的黏弹响应和复合黏度;最后,苎麻纤维的加入提高了复合材料的拉伸和弯曲强度,且随纤维含量的增加而增大。与聚乳酸相比,当纤维质量分数为40%时复合材料的拉伸和弯曲强度分别提高了30%和21.9%。   相似文献   

9.
A micromodeling analysis of unidirectionally reinforced Ti-6-4/SM1140+ composites subjected to transverse tensile loading has been performed using the finite-element method (FEM). The composite is assumed to the infinite and regular, with either hexagonal or rectangular arrays of fibers in an elastic-plastic matrix. Unit cells of these arrays are applied in this modeling analysis. Factors affecting transverse properties of the composites, such as thermal residual stresses caused by cooling from the composite processing temperature, fiber-matrix interface conditions, fiber volume fraction, fiber spacing, fiber packing, and test temperature are discussed. Predictions of stress-strain curves are compared with experimental results. A hexagonal fiber-packing model with a weak fiber-matrix interfacial strength predicts the transverse tensile behavior of the composite Ti-6-4/SM1140+ most accurately.  相似文献   

10.
A series of high-temperature fatigue crack growth experiments was conducted on a continuous-fiberreinforced SM1240/TIMETAL-21S composite using three different temperatures, room temperature (24 °C), 500 °C, and 650 °C, and three loading frequencies, 10, 0.1, and 0.02 Hz. In all the tests, the cracking process concentrated along a single mode I crack for which the principal damage mechanism was crack bridging and fiber/matrix debonding. The matrix transgranular fracture mode was not significantly influenced by temperature or loading frequency. The fiber debonding length in the crack bridging region was estimated based on the knowledge of the fiber pullout lengths measured along the fracture surfaces of the test specimens. The average pullout length was correlated with both temperature and loading frequency. Furthermore, the increase in the temperature was found to lead to a decrease in the crack growth rate. The mechanism responsible for this behavior is discussed in relation to the interaction of a number of temperature-dependent factors acting along the bridged fiber/matrix debonded zone. These factors include the frictional stress, the radial stress, and the debonding length of the fiber/matrix interface. In addition, the crack growth speed was found to depend proportionally on the loading frequency. This relationship, particularly at low frequencies, is interpreted in terms of the development of a crack tip closure induced by the relaxation of the compressive residual stresses developed in the matrix phase in regions ahead of the crack tip during the time-dependent loading process.  相似文献   

11.
The fatigue crack growth behavior of a Ti-6A1-4V composite with boron fibers was previously studied in the as-received and thermally exposed conditions. Fracture strengths of the composite, fiber, and interface were characterized together with fatigue crack growth rates and failure mechanisms. Utilizing the matrix and fiber properties as input, a recently proposed model was exercised to elucidate the effects of interfacial strength on crack growth rates in the composite. Comparison of experimental results with model calculations revealed that a weak fiber/matrix interface combined with a strong, high-modulus fiber led to interface debonding and crack deflection and produced the beneficial effects of increased threshold and reduced transverse crack growth rates. This paper is based on a presentation made in the symposium “Interfaces and Surfaces of Titanium Materials” presented at the 1988 TMS/AIME fall meeting in Chicago, IL, September 25–29, 1988, under the auspices of the TMS Titanium Committee.  相似文献   

12.
The optimum amount of rare earth elements (RE) for treating glass fiber surface and its effect on the tensile properties of glass fiber reinforced polytetrafluoroethylene (GF/PTFE) composites were investigated. The tensile properties of GF/PTFE composites with different surface treatment conditions were measured. The fracture surface morphologies were observed and analyzed by SEM. The results indicate that rare earth elements can effectively promote the interfacial adhesion between the glass fiber and PTFE, owing to the effects of rare earth elements on the compatibility. The tensile properties of GF/PTFE composites can be improved considerably when the content of RE in surface modifier is 0.2%-0.4%,and the optimum performance of GF/PTFE composites is obtained at 0.3 % RE content.  相似文献   

13.
Mechanisms of longitudinal creep deformation and damage were studied in an eight-ply unidirectional-reinforced SCS-6/Ti-6Al-4V composite. The composite was creep tested in air under constant tensile load at temperatures from 427 °C to 650 °C and stresses from 621 to 1380 MPa.In situ acoustic emission (AE) monitoring and post-test metallographic evaluation were used to study fiber fracture and damage during creep. At low creep stresses, creep rates continuously decreased to near-zero values. This was attributed to a mechanism of matrix relaxation and the time-dependent redistribution of load from the ductile matrix to the elastic fibers. At higher stresses, progressive fiber overload occurred during creep loading. In this case, the composite exhibited a stage of decreasing creep rate (due primarily to matrix relaxation), followed by a secondary stage of nearly constant creep rate due to fiber fracture. The results indicate that interfacial oxidation damage and inefficient load transfer at elevated temperatures significantly decreased the capability of broken fibers to carry load. As a result, additional time-dependent stress redistribution occurred in the composite, which was responsible for the secondary creep stage.  相似文献   

14.
Unlike many eutectic composites, the Ni-W eutectic exhibits extensive ductility by slip. Furthermore, its properties may be greatly varied by proper heat treatments. Here results of studies of deformation in both monotonic and fatigue loading are reported. During monotonie deformation the fiber /matrix interface acts as a source of dislocations at low strains and an obstacle to matrix slip at higher strains. Deforming the quenched-plus-aged eutectic causes planar matrix slip, with the result that matrix slip bands create stress concentrations in the fibers at low strains. The aged eutectic reaches generally higher stress levels for comparable strains than does the as-quenched eutectic, and the failure strains decrease with increasing aging times. For the composites tested in fatigue, the aged eutectic has better high-stress fatigue resistance than the as-quenched material, but for low-stress, high-cycle fatigue their cycles to failure are nearly the same. However, both crack initiation and crack propagation are different in the two conditions, so the coincidence in high-cycle fatigue is probably fortuitous. The effect of matrix strength on composite performance is not simple, since changes in strength may be accompanied by alterations in slip modes and failure processes.  相似文献   

15.
Thermal cycling of a composite material creates thermal stresses in the composite because of thermal-expansion mismatch between the fiber and the matrix. These stresses can be quite large in the case of ceramic-fiber-reinforced light-metal-matrix composites, leading to plastic deformation of the metal matrix. Other modes of damage include an increased reaction zone at the interface, cavitation at the interface, and, finally, fiber fracture. Mechanical cyclic loading of the composite concomitant with thermal cycling can aggravate the situation even more. Large reductions in the strength of the composite were observed under thermal-fatigue conditions. This degradation was due to the microstructural damage of the fiber/matrix interface and fiber fracture. Under conditions of cavitation at the interface, it is possible to use quantitative damage parameters based upon loss in modulus or change in density to evaluate the damage.  相似文献   

16.
This article proposes a new theory for predicting the crack-bridging performance of random short fibers involved in cementitious composites. The current theoretical model for estimating crack bridging performance of random short fiber reinforced cement composites under tension is limited to specific constituent properties: friction-dominant fiber-matrix interface and complete fiber pull-out from matrix without rupture. The new theory extends this model by accounting for two often-encountered features in practice: fiber strength reduction and rupture in composites, and chemical bond–dominant fiber-matrix interface. The new theory was verified to capture important characteristics in bridging performance in comparison with composite tensile test data. As a result, the new theory forms an important foundation for developing high-performance random short fiber reinforced cement composites.  相似文献   

17.
Unlike many eutectic composites, the Ni-W eutectic exhibits extensive ductility by slip. Furthermore, its properties may be greatly varied by proper heat treatments. Here results of studies of deformation in both monotonic and fatigue loading are reported. During monotonie deformation the fiber /matrix interface acts as a source of dislocations at low strains and an obstacle to matrix slip at higher strains. Deforming the quenched-plus-aged eutectic causes planar matrix slip, with the result that matrix slip bands create stress concentrations in the fibers at low strains. The aged eutectic reaches generally higher stress levels for comparable strains than does the as-quenched eutectic, and the failure strains decrease with increasing aging times. For the composites tested in fatigue, the aged eutectic has better high-stress fatigue resistance than the as-quenched material, but for low-stress, high-cycle fatigue their cycles to failure are nearly the same. However, both crack initiation and crack propagation are different in the two conditions, so the coincidence in high-cycle fatigue is probably fortuitous. The effect of matrix strength on composite performance is not simple, since changes in strength may be accompanied by alterations in slip modes and failure processes.  相似文献   

18.
《Acta Metallurgica Materialia》1991,39(10):2275-2284
The role of fiber debonding and sliding on the toughness of intermetallic composites reinforced with ductile fibers is examined. The toughness is shown to be a function of the matrix/fiber interface properties, residual stresses and the volume fraction, size and flow behavior of the fibers. Mechanical testing and in situ microstructural observations were carried out on a Ti-25at.%Ta-50at.%Al intermetallic matrix reinforced with W-3Re fibers. The fibers were coated with a thin oxide layer in order to induce debonding and prevent interdiffusion between the fiber and the matrix. The ductility, high strength and debond characteristics of coated tungsten-rhenium fibers promote a large increase in toughness. However, the mismatch in thermal expansion coefficients is the source of large residual tensile stresses in the matrix that induces spontaneous matrix cracking. Matrix cracking and composite toughness are examined as a function of the interfacial properties, residual stresses and properties of the fiber.  相似文献   

19.
Micromechanisms influencing crack propagation in a unidirectional SiC-fiber (SCS-8) continuously reinforced Al-Mg-Si 6061 alloy metal-matrix composite (SiCf/Al-6061) during monotonie and cyclic loading are examined at room temperature, both for the longitudinal (0 deg or L-T) and transverse (90 deg or T-L) orientations. It is found that the composite is insensitive to the presence of notches in the L-T orientation under pure tension loading due to the weak fiber/matrix interface; notched failure strengths are ∼1500 MPa compared to 124 MPa for unreinforced 6061. However, behavior is strongly dependent on loading configuration, specimen geometry, and orientation. Specifically, properties in SiCf/Al in the T-L orientation are inferior to unreinforced 6061, although the composite does exhibit increasing crack-growth resistance with crack extension (resistance-curve behavior) under monotonie loading; peak toughnesses of ∼16 MPa√m are achieved due to crack bridging by the continuous metal phase between fibers and residual plastic deformation in the crack wake. In contrast, such bridging is minimal under cyclic loading, as the ductile phase fails subcritically by fatigue such that the transverse fatigue crack-growth resistance is superior in the unreinforced alloy, particularly at high stress-intensity levels. Conversely, fatigue cracks are bridged by unbroken SiC fibers in the L-T orientation and exhibit marked crack deflection and branching; the fatigue crack-growth resistance in this orientation is clearly superior in the composite.  相似文献   

20.
Fiber fragmentation is a problem frequently encountered during the processing of metallic matrix composites. In this study, we examine the fragmentation of continuous fibers during a common composite consolidation process based on hot pressing in an open-ended channel die with fibers aligned parallel to the die walls. During the latter stages of consolidation, flow of the matrix along the die cavity may occur such that the resulting load transfer to the fibers can cause their fracture even in the absence of bending. This study analyzes the combination of conditions necessary for both matrix flow along the die cavity and the shear-lag loading of the fibers to a level that causes fragmentation. In order to validate the analysis, we model the fragmentation of fibers during elevated temperature hot pressing of Ni-base composites by the room-temperature consolidation of degraded sapphire fibers in a tin matrix. The observed fiber fragmentation behavior is in good agreement with theoretical predictions. The analysis also indicates that this mode of fiber fragmentation is confined either to low volume-fraction fiber composites or to the ends of panels of high volume-fraction fiber composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号