首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Rebolia 《Calcolo》1973,10(3-4):245-256
The coefficientsA hi and the nodesx mi for «closed” Gaussian-type quadrature formulae $$\int\limits_{ - 1}^1 {f(x)dx = \sum\limits_{h = 0}^{2_8 } {\sum\limits_{i = 0}^{m + 1} {A_{hi} f^{(h)} (x_{mi} ) + R\left[ {f(x)} \right]} } } $$ withx m0 =?1,x m, m+1 =1 andR[f(x)]=0 iff(x) is a polinomial of degree at most2m(s+1)+2(2s+1)?1, have been tabulated for the cases: $$\left\{ \begin{gathered} s = 1,2 \hfill \\ m = 2,3,4,5 \hfill \\ \end{gathered} \right.$$ .  相似文献   

2.
We show in this note that the equation αx1 + #x22EF; +αxp?ACβy1 + α +βyq where + is an AC operator and αx stands for x+...+x (α times), has exactly $$\left( { - 1} \right)^{p + q} \sum\limits_{i = 0}^p {\sum\limits_{j = 0}^q {\left( { - 1} \right)^{1 + 1} \left( {\begin{array}{*{20}c} p \\ i \\ \end{array} } \right)\left( {\begin{array}{*{20}c} q \\ j \\ \end{array} } \right)} 2^{\left( {\alpha + \begin{array}{*{20}c} {j - 1} \\ \alpha \\ \end{array} } \right)\left( {\beta + \begin{array}{*{20}c} {i - 1} \\ \beta \\ \end{array} } \right)} } $$ minimal unifiers if gcd(α, β)=1.  相似文献   

3.
Recently, we derived some new numerical quadrature formulas of trapezoidal rule type for the integrals \(I^{(1)}[g]=\int ^b_a \frac{g(x)}{x-t}\,dx\) and \(I^{(2)}[g]=\int ^b_a \frac{g(x)}{(x-t)^2}\,dx\) . These integrals are not defined in the regular sense; \(I^{(1)}[g]\) is defined in the sense of Cauchy Principal Value while \(I^{(2)}[g]\) is defined in the sense of Hadamard Finite Part. With \(h=(b-a)/n, \,n=1,2,\ldots \) , and \(t=a+kh\) for some \(k\in \{1,\ldots ,n-1\}, \,t\) being fixed, the numerical quadrature formulas \({Q}^{(1)}_n[g]\) for \(I^{(1)}[g]\) and \(Q^{(2)}_n[g]\) for \(I^{(2)}[g]\) are $$\begin{aligned} {Q}^{(1)}_n[g]=h\sum ^n_{j=1}f(a+jh-h/2),\quad f(x)=\frac{g(x)}{x-t}, \end{aligned}$$ and $$\begin{aligned} Q^{(2)}_n[g]=h\sum ^n_{j=1}f(a+jh-h/2)-\pi ^2g(t)h^{-1},\quad f(x)=\frac{g(x)}{(x-t)^2}. \end{aligned}$$ We provided a complete analysis of the errors in these formulas under the assumption that \(g\in C^\infty [a,b]\) . We actually show that $$\begin{aligned} I^{(k)}[g]-{Q}^{(k)}_n[g]\sim \sum ^\infty _{i=1} c^{(k)}_ih^{2i}\quad \text {as}\,n \rightarrow \infty , \end{aligned}$$ the constants \(c^{(k)}_i\) being independent of \(h\) . In this work, we apply the Richardson extrapolation to \({Q}^{(k)}_n[g]\) to obtain approximations of very high accuracy to \(I^{(k)}[g]\) . We also give a thorough analysis of convergence and numerical stability (in finite-precision arithmetic) for them. In our study of stability, we show that errors committed when computing the function \(g(x)\) , which form the main source of errors in the rest of the computation, propagate in a relatively mild fashion into the extrapolation table, and we quantify their rate of propagation. We confirm our conclusions via numerical examples.  相似文献   

4.
F. Costabile 《Calcolo》1974,11(2):191-200
For the Tschebyscheff quadrature formula: $$\int\limits_{ - 1}^1 {\left( {1 - x^2 } \right)^{\lambda - 1/2} f(x) dx} = K_n \sum\limits_{k = 1}^n {f(x_{n,k} )} + R_n (f), \lambda > 0$$ it is shown that the degre,N, of exactness is bounded by: $$N \leqslant C(\lambda )n^{1/(2\lambda + 1)} $$ whereC(λ) is a convenient function of λ. For λ=1 the complete solution of Tschebyscheff's problem is given.  相似文献   

5.
In this paper we study quadrature formulas of the form $$\int\limits_{ - 1}^1 {(1 - x)^a (1 + x)^\beta f(x)dx = \sum\limits_{i = 0}^{r - 1} {[A_i f^{(i)} ( - 1) + B_i f^{(i)} (1)] + K_n (\alpha ,\beta ;r)\sum\limits_{i = 1}^n {f(x_{n,i} ),} } } $$ (α>?1, β>?1), with realA i ,B i ,K n and real nodesx n,i in (?1,1), valid for prolynomials of degree ≤2n+2r?1. In the first part we prove that there is validity for polynomials exactly of degree2n+2r?1 if and only if α=β=?1/2 andr=0 orr=1. In the second part we consider the problem of the existence of the formula $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(x)dx = A_n f( - 1) + B_n f(1) + C\sum\limits_{i = 1}^n {f(x_{n,i} )} }$$ for polynomials of degree ≤n+2. Some numerical results are given when λ=1/2.  相似文献   

6.
We describe an extension to our quantifier-free computational logic to provide the expressive power and convenience of bounded quantifiers and partial functions. By quantifier we mean a formal construct which introduces a bound or indicial variable whose scope is some subexpression of the quantifier expression. A familiar quantifier is the Σ operator which sums the values of an expression over some range of values on the bound variable. Our method is to represent expressions of the logic as objects in the logic, to define an interpreter for such expressions as a function in the logic, and then define quantifiers as ‘mapping functions’. The novelty of our approach lies in the formalization of the interpreter and its interaction with the underlying logic. Our method has several advantages over other formal systems that provide quantifiers and partial functions in a logical setting. The most important advantage is that proofs not involving quantification or partial recursive functions are not complicated by such notions as ‘capturing’, ‘bottom’, or ‘continuity’. Naturally enough, our formalization of the partial functions is nonconstructive. The theorem prover for the logic has been modified to support these new features. We describe the modifications. The system has proved many theorems that could not previously be stated in our logic. Among them are:
  • ? classic quantifier manipulation theorems, such as $$\sum\limits_{{\text{l}} = 0}^{\text{n}} {{\text{g}}({\text{l}}) + {\text{h(l) = }}} \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{g}}({\text{l}})} + \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{h(l)}};} $$
  • ? elementary theorems involving quantifiers, such as the Binomial Theorem: $$(a + b)^{\text{n}} = \sum\limits_{{\text{l = }}0}^{\text{n}} {\left( {_{\text{i}}^{\text{n}} } \right)} \user2{ }{\text{a}}^{\text{l}} {\text{b}}^{{\text{n - l}}} ;$$
  • ? elementary theorems about ‘mapping functions’ such as: $$(FOLDR\user2{ }'PLUS\user2{ O L) = }\sum\limits_{{\text{i}} \in {\text{L}}}^{} {{\text{i}};} $$
  • ? termination properties of many partial recursive functions such as the fact that an application of the partial function described by $$\begin{gathered} (LEN X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F ({\rm E}QUAL X NIL) \hfill \\ {\rm O} \hfill \\ (ADD1 (LEN (CDR X)))) \hfill \\ \end{gathered} $$ terminates if and only if the argument ends in NIL;
  • ? theorems about functions satisfying unusual recurrence equations such as the 91-function and the following list reverse function: $$\begin{gathered} (RV X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F (AND (LISTP X) (LISTP (CDR X))) \hfill \\ (CONS (CAR (RV (CDR X))) \hfill \\ (RV (CONS (CAR X) \hfill \\ (RV (CDR (RV (CDR X))))))) \hfill \\ X). \hfill \\ \end{gathered} $$
  •   相似文献   

    7.
    P. Wynn 《Calcolo》1971,8(3):255-272
    The transformation (*) $$\sum\limits_{\nu = 0}^\infty {t_\nu z^\nu \to } \sum\limits_{\nu = 0}^\infty {\left\{ {\sum\limits_{\tau = 0}^{h - 1} {z^\tau } \Delta ^\nu t_{h\nu + \tau } + \frac{{z^h }}{{1 - z}}\Delta ^\nu t_{h(\nu + 1)} } \right\}} \left( {\frac{{z^{h + 1} }}{{1 - z}}} \right)^\nu$$ whereh≥0 is an integer and Δ operates upon the coefficients {t v } of the series being transformed, is derived. Whenh=0, the above transformation is the generalised Euler transformation, of which (*) is itself a generalisation. Based upon the assumption that \(t_\nu = \int\limits_0^1 {\varrho ^\nu d\sigma (\varrho ) } (\nu = 0, 1,...)\) , where σ(?) is bounded and non-decreasing for 0≤?≤1 and subject to further restrictions, a convergence theory of (*) is given. Furthermore, the question as to when (*) functions as a convergence acceleration transformation is investigated. Also the optimal valne ofh to be taken is derived. A simple algorithm for constructing the partial sums of (*) is devised. Numerical illustrations relating to the case in whicht v =(v+1) ?1 (v=0,1,...) are given.  相似文献   

    8.
    This paper is intended as an attempt to describe logical consequence in branching time logics. We study temporal branching time logics $\mathcal {BTL}^{\mathrm {U,S}}_{\mathrm {N},\mathrm {N}^{-1}}(\mathcal {Z})_{\alpha }$ which use the standard operations Until and Next and dual operations Since and Previous (LTL, as standard, uses only Until and Next). Temporal logics $\mathcal {BTL}^{\mathrm {U,S}}_{\mathrm {N},\mathrm {N}^{-1}}(\mathcal {Z})_{\alpha }$ are generated by semantics based on Kripke/Hinttikka structures with linear frames of integer numbers $\mathcal {Z}$ with a single node (glued zeros). For $\mathcal {BTL}^{\mathrm {U,S}}_{\mathrm {N},\mathrm {N}^{-1}}(\mathcal {Z})_{\alpha }$ , the permissible branching of the node is limited by α (where 1≤αω). We prove that any logic $\mathcal {BTL}^{\mathrm {U,S}}_{\mathrm {N},\mathrm {N}^{-1}}(\mathcal {Z})_{\alpha }$ is decidable w.r.t. admissible consecutions (inference rules), i.e. we find an algorithm recognizing consecutions admissible in $\mathcal {BTL}^{\mathrm {U,S}}_{\mathrm {N},\mathrm {N}^{-1}}(\mathcal {Z})_{\alpha }$ . As a consequence, it implies that $\mathcal {BTL}^{\mathrm {U,S}}_{\mathrm {N},\mathrm {N}^{-1}}(\mathcal {Z})_{\alpha }$ itself is decidable and solves the satisfiability problem.  相似文献   

    9.
    J. M. F. Chamayou 《Calcolo》1978,15(4):395-414
    The function * $$f(t) = \frac{{e^{ - \alpha \gamma } }}{\pi }\int\limits_0^\infty {\cos t \xi e^{\alpha Ci(\xi )} \frac{{d\xi }}{{\xi ^\alpha }},t \in R,\alpha > 0} $$ [Ci(x)=cosine integral, γ=Euler's constant] is studied and numerically evaluated;f is a solution to the following mixed type differential-difference equation arising in applied probability: ** $$tf'(t) = (\alpha - 1)f(t) - \frac{\alpha }{2}[f(t - 1) + f(t + 1)]$$ satisfying the conditions: i) $$f(t) \geqslant 0,t \in R$$ , ii) $$f(t) = f( - t),t \in R$$ , iii) $$\int\limits_{ - \infty }^{ + \infty } {f(\xi )d\xi = 1} $$ . Besides the direct numerical evaluation of (*) and the derivation of the asymptotic behaviour off(t) fort→0 andt→∞, two different iterative procedures for the solution of (**) under the conditions (i) to (iii) are considered and their results are compared with the corresponding values in (*). Finally a Monte Carlo method to evaluatef(t) is considered.  相似文献   

    10.
    P. Brianzi  L. Rebolia 《Calcolo》1982,19(1):71-86
    A numerical performance of integral form for the linear ordinary differential equations $$y^{(n)} = \sum\limits_{i = 0}^{n - 2} { a_{i + 2} (x) y^{(n - 2 - i)} (x)}$$ is proved. Three numerical experiments are also given.  相似文献   

    11.
    In this paper, we present a new parametric parallel algorithm for semigroup computation on mesh with reconfigurable buses (MRB). Givenn operands, our parallel algorithm can be performed in $O(2^{(2c^2 + 3c)/(4c + 1)} n^{1/(8c + 2)} )$ , time on a $2^{(c^2 - c)/(8c + 2)} n^{(5c + 1)/(8c + 2)} \times 2^{(c - c^2 )/(8c + 2)} n^{(3c + 1)/(8c + 2)} $ MRB ofn processors, where $0 \leqslant c \leqslant O(\sqrt {\log _2 n} )$ . Specifically, whenc=0, it takes $O(\sqrt n )$ time on the $\sqrt n \times \sqrt n $ MRB and is equal to the result on the mesh-connected computers; whenc=1, it takesO(n 1/10) time on then 3/5×n 2/5 MRB and is equal to the previous result on the mesh-connected computers with segmented multiple buses; whenc=2, it takesO(n 1/18) time on the 21/9 n 11/18×2(?1/9) n 7/18 MRB; when $O(\sqrt {\log _2 n} )$ , it takesO(log2 n) time and is equal to the previous result on the MRB. Consequently, our results can be viewed as a unification of some best known results on different parallel computational models.  相似文献   

    12.
    In this paper we study quadrature formulas of the types (1) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = C_n^{ (\lambda )} \sum\limits_{i = 1}^n f (x_{n,i} ) + R_n \left[ f \right]} ,$$ (2) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = A_n^{ (\lambda )} \left[ {f\left( { - 1} \right) + f\left( 1 \right)} \right] + K_n^{ (\lambda )} \sum\limits_{i = 1}^n f (\bar x_{n,i} ) + \bar R_n \left[ f \right]} ,$$ with 0<λ<1, and we obtain inequalities for the degreeN of their polynomial exactness. By using such inequalities, the non-existence of (1), with λ=1/2,N=n+1 ifn is even andN=n ifn is odd, is directly proved forn=8 andn≥10. For the same value λ=1/2 andN=n+3 ifn is evenN=n+2 ifn is odd, the formula (2) does not exist forn≥12. Some intermediary results regarding the first zero and the corresponding Christoffel number of ultraspherical polynomialP n (λ) (x) are also obtained.  相似文献   

    13.
    We study certain properties of Rényi entropy functionals $H_\alpha \left( \mathcal{P} \right)$ on the space of probability distributions over ?+. Primarily, continuity and convergence issues are addressed. Some properties are shown to be parallel to those known in the finite alphabet case, while others illustrate a quite different behavior of the Rényi entropy in the infinite case. In particular, it is shown that for any distribution $\mathcal{P}$ and any r ∈ [0,∞] there exists a sequence of distributions $\mathcal{P}_n$ converging to $\mathcal{P}$ with respect to the total variation distance and such that $\mathop {\lim }\limits_{n \to \infty } \mathop {\lim }\limits_{\alpha \to 1 + } H_\alpha \left( {\mathcal{P}_n } \right) = \mathop {\lim }\limits_{\alpha \to 1 + } \mathop {\lim }\limits_{n \to \infty } H_\alpha \left( {\mathcal{P}_n } \right) + r$ .  相似文献   

    14.
    The purpose of this paper is to find a class of weight functions μ for which there exist quadrature formulae of the form (1) $$\int_{ - 1}^1 {\mu (x) f(x) dx \approx \sum\limits_{k = 1}^n {(a_k f(x_k ) + b_k f''(x_k ))} }$$ , which are precise for every polynomial of degree 2n.  相似文献   

    15.
    We prove exact boundary controllability for the Rayleigh beam equation ${\varphi_{tt} -\alpha\varphi_{ttxx} + A\varphi_{xxxx} = 0, 0 < x < l, t > 0}$ with a single boundary control active at one end of the beam. We consider all combinations of clamped and hinged boundary conditions with the control applied to either the moment ${\varphi_{xx}(l, t)}$ or the rotation angle ${\varphi_{x}(l, t)}$ at an end of the beam. In each case, exact controllability is obtained on the space of optimal regularity for L 2(0, T) controls for ${T > 2l\sqrt{\frac{\alpha}{A}}}$ . In certain cases, e.g., the clamped case, the optimal regularity space involves a quotient in the velocity component. In other cases, where the regularity for the observed problem is below the energy level, a quotient space may arise in solutions of the observed problem.  相似文献   

    16.
    Dr. J. Rokne 《Computing》1979,21(2):159-170
    In computing the range of values of a polynomial over an intervala≤x≤b one may use polynomials of the form $$\left( {\begin{array}{*{20}c} k \\ j \\ \end{array} } \right)\left( {x - a} \right)^j \left( {b - x} \right)^{k - j} $$ called Bernstein polynomials of the degreek. An arbitrary polynomial of degreen may be written as a linear combination of Bernstein polynomials of degreek≥n. The coefficients of this linear combination furnish an upper/lower bound for the range of the polynomial. In this paper a finite differencelike scheme is investigated for this computation. The scheme is then generalized to interval polynomials.  相似文献   

    17.
    Given a graph with n vertices, k terminals and positive integer weights not larger than c, we compute a minimum Steiner Tree in $\mathcal{O}^{\star}(2^{k}c)$ time and $\mathcal{O}^{\star}(c)$ space, where the $\mathcal{O}^{\star}$ notation omits terms bounded by a polynomial in the input-size. We obtain the result by defining a generalization of walks, called branching walks, and combining it with the Inclusion-Exclusion technique. Using this combination we also give $\mathcal{O}^{\star}(2^{n})$ -time polynomial space algorithms for Degree Constrained Spanning Tree, Maximum Internal Spanning Tree and #Spanning Forest with a given number of components. Furthermore, using related techniques, we also present new polynomial space algorithms for computing the Cover Polynomial of a graph, Convex Tree Coloring and counting the number of perfect matchings of a graph.  相似文献   

    18.
    We prove two main results on how arbitrary linear threshold functions ${f(x) = {\rm sign}(w \cdot x - \theta)}$ over the n-dimensional Boolean hypercube can be approximated by simple threshold functions. Our first result shows that every n-variable threshold function f is ${\epsilon}$ -close to a threshold function depending only on ${{\rm Inf}(f)^2 \cdot {\rm poly}(1/\epsilon)}$ many variables, where ${{\rm Inf}(f)}$ denotes the total influence or average sensitivity of f. This is an exponential sharpening of Friedgut’s well-known theorem (Friedgut in Combinatorica 18(1):474–483, 1998), which states that every Boolean function f is ${\epsilon}$ -close to a function depending only on ${2^{O({\rm Inf}(f)/\epsilon)}}$ many variables, for the case of threshold functions. We complement this upper bound by showing that ${\Omega({\rm Inf}(f)^2 + 1/\epsilon^2)}$ many variables are required for ${\epsilon}$ -approximating threshold functions. Our second result is a proof that every n-variable threshold function is ${\epsilon}$ -close to a threshold function with integer weights at most ${{\rm poly}(n) \cdot 2^{\tilde{O}(1/\epsilon^{2/3})}.}$ This is an improvement, in the dependence on the error parameter ${\epsilon}$ , on an earlier result of Servedio (Comput Complex 16(2):180–209, 2007) which gave a ${{\rm poly}(n) \cdot 2^{\tilde{O}(1/\epsilon^{2})}}$ bound. Our improvement is obtained via a new proof technique that uses strong anti-concentration bounds from probability theory. The new technique also gives a simple and modular proof of the original result of Servedio (Comput Complex 16(2):180–209, 2007) and extends to give low-weight approximators for threshold functions under a range of probability distributions other than the uniform distribution.  相似文献   

    19.
    In this paper, we consider the $(\in_{\gamma},\in_{\gamma} \vee \; \hbox{q}_{\delta})$ -fuzzy and $(\overline{\in}_{\gamma},\overline{\in}_{\gamma} \vee \; \overline{\hbox{q}}_{\delta})$ -fuzzy subnear-rings (ideals) of a near-ring. Some new characterizations are also given. In particular, we introduce the concepts of (strong) prime $(\in_{\gamma},\in_{\gamma} \vee \; \hbox{q}_{\delta})$ -fuzzy ideals of near-rings and discuss the relationship between strong prime $(\in_{\gamma},\in_{\gamma} \vee \; \hbox{q}_{\delta})$ -fuzzy ideals and prime $(\in_{\gamma},\in_{\gamma} \vee \; \hbox{q}_{\delta})$ -fuzzy ideals of near-rings.  相似文献   

    20.
    We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151, 2016), being called the time-tempered fractional Feynman–Kac equation named after Richard Feynman and Mark Kac who first considered the model describing the functional distribution of normal motion. The key step of designing the algorithms is to discretize the time tempered fractional substantial derivative, being defined as
    $$\begin{aligned} {^S\!}D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t)\!=\!D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t)\!-\!\lambda ^\gamma G(x,p,t) \end{aligned}$$
    with \(\widetilde{\lambda }=\lambda + pU(x),\, p=\rho +J\eta ,\, J=\sqrt{-1}\), where
    $$\begin{aligned} D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t) =\frac{1}{\varGamma (1-\gamma )} \left[ \frac{\partial }{\partial t}+\widetilde{\lambda } \right] \int _{0}^t{\left( t-z\right) ^{-\gamma }}e^{-\widetilde{\lambda }\cdot (t-z)}{G(x,p,z)}dz, \end{aligned}$$
    and \(\lambda \ge 0\), \(0<\gamma <1\), \(\rho >0\), and \(\eta \) is a real number. The designed schemes are unconditionally stable and have the global truncation error \(\mathscr {O}(\tau ^2+h^2)\), being theoretically proved and numerically verified in complex space. Moreover, some simulations for the distributions of the first passage time are performed, and the second order convergence is also obtained for solving the ‘physical’ equation (without artificial source term).
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号