首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Classical class I major histocompatibility complex (MHC) molecules, as well as the nonclassical class I histocompatibility leukocyte antigen (HLA)-E molecule, can negatively regulate natural killer (NK) cell cytotoxicity through engagement of NK inhibitory receptors. We show that expression of murine (m)CD1.1, a nonpolymorphic nonclassical MHC class I-like molecule encoded outside the MHC, protects NK-sensitive RMA/S target cells from adherent lymphokine-activated killer cell (A-LAK) cytotoxicity. Passage of effector cells in recombinant interleukin (rIL)-2 enhanced protection by mCD1.1, suggesting an expansion of relevant A-LAK population(s) or modulation of A-LAK receptor expression. Murine CD1. 1 conferred protection from lysis by rIL-2-activated spleen cells of recombination activating gene (Rag)-1(-/-) mice, which lack B and T cells, demonstrating that mCD1.1 can protect RMA/S cells from lysis by NK cells. An antibody specific for mCD1.1 partially restored A-LAK lysis of RMA/S.CD1.1 transfectants, indicating that cell surface mCD1.1 can confer protection from lysis; therefore, mCD1.1 possibly acts through interaction with an NK inhibitory receptor. CD1.1 is by far the most divergent class I molecule capable of regulating NK cell activity. Finally, mCD1.1 expression rendered RMA/S cells resistant to lysis by A-LAK of multiple mouse strains. The conserved structure of mCD1.1 and pattern of mCD1.1 resistance from A-LAK lysis suggest that mCD1.1 may be a ligand for a conserved NK inhibitory receptor.  相似文献   

2.
The mouse CD1 (mCD1) molecule is a class I-like molecule that is encoded outside of the MHC. We show here that mCD1 shares several properties with Ag-presenting class I molecules, including a requirement for beta2-microglobulin for stable cell-surface expression in T lymphocyte transfectants and thymocytes. mCD1 is also capable of binding to mouse CD8alphabeta heterodimers participating in the activation of CD8+ T cells in a manner similar to classical class I molecules. However, mCD1 surface expression is not decreased at high temperatures in cells that lack the transporter associated with Ag processing (TAP), including both RMA-S and Drosophila melanogaster cells. The data indicate that mCD1 does not require TAP to be expressed in a stable fashion at the cell surface. We speculate that the ability of mCD1 to reach the cell surface in transporter-deficient cells may reflect its ability to present a distinct set of ligands. The properties of mCD1 described here can account, in part, for the selection of the diverse populations of T cells that are known to be mCD1 reactive.  相似文献   

3.
Human and murine T cells that specifically recognize CD1d and produce IL-4 and IFN-gamma play a role in immunoregulation and tumor rejection. In the mouse, most CD1d1-reactive T cells described express an invariant Valpha14-Jalpha281 TCR associated with TCR beta-chains of limited diversity. Similarly, human CD1d-reactive T cells express a highly restricted TCR repertoire. Here we report the unexpected result that in mice immunized with CD1d1-bearing transfectant cells, a diverse repertoire of TCRs was expressed by CD1d1-reactive T cell clones isolated by limiting dilution without preselection for NK1 expression. Only 3 of 10 CD1d1-reactive T cell clones expressed the invariant Valpha14-Jalpha281 TCRalpha rearrangement. T cells expressing Valpha10, -11, -15, and -17, and having non-germline-encoded nucleotides resulting in diverse V-J junctions were identified. Like CD1d1-reactive T cells expressing the invariant Valpha14-Jalpha281 TCR alpha-chain, CD1d1-reactive clones with diverse TCRs produced both Type 1 (IFN-y) and Type 2 (IL-4, IL-10) cytokines. This establishes the existence of significant diversity in the TCRs directly reactive to the CD1d1 protein. Our findings reveal that CD1d interacts with a broad array of TCRs, suggesting substantial redundancy and flexibility of the immune system in providing T cells serving the role(s) mediated by CD1d reactivity.  相似文献   

4.
Human and murine natural T (NT) cells, also referred to as NK1.1+ or NK T cells, express TCR with homologous V regions (hAV24/BV11 and mAV14/BV8, respectively) and conserved "invariant" TCR AVAJ junctional sequences, suggesting recognition of closely related antigens. Murine NT cells recognize CD1-expressing cells and are activated in a CD1-restricted fashion by several synthetic alpha-glycosylceramides, such as alpha-GalCer. Here we studied the reactivity of human T cells against CD1d+ cells pulsed or not with alpha-GalCer and other related ceramides. CD1d-restricted recognition of alpha-GalCer was a general and specific feature of T cell clones expressing both BV11 and canonical AV24AJ18 TCR chains. Besides, human and murine NT cells showed the same reactivity patterns against a set of related glycosylceramides, suggesting a highly conserved mode of recognition of these antigens in humans and rodents. We also identified several AV24BV11 T cell clones self reactive against CD1+ cells of both hemopoietic and nonhemopoietic origin, suggesting the existence of distinct NT cell subsets differing by their ability to recognize self CD1d molecules.  相似文献   

5.
A population of human T cells expressing an invariant V alpha 24 J alpha Q T cell antigen receptor (TCR) alpha chain and high levels of CD161 (NKR-P1A) appears to play an immunoregulatory role through production of both T helper (Th) type 1 and Th2 cytokines. Unlike other CD161(+) T cells, the major histocompatibility complex-like nonpolymorphic CD1d molecule is the target for the TCR expressed by these T cells (V alpha 24(invt) T cells) and by the homologous murine NK1 (NKR-P1C)+ T cell population. In this report, CD161 was shown to act as a specific costimulatory molecule for TCR-mediated proliferation and cytokine secretion by V alpha 24(invt) T cells. However, in contrast to results in the mouse, ligation of CD161 in the absence of TCR stimulation did not result in V alpha 24(invt) T cell activation, and costimulation through CD161 did not cause polarization of the cytokine secretion pattern. CD161 monoclonal antibodies specifically inhibited V alpha 24(invt) T cell proliferation and cytokine secretion in response to CD1d+ target cells, demonstrating a physiological accessory molecule function for CD161. However, CD1d-restricted target cell lysis by activated V alpha 24(invt) T cells, which involved a granule-mediated exocytotic mechanism, was CD161-independent. In further contrast to the mouse, the signaling pathway involved in V alpha 24(invt) T cell costimulation through CD161 did not appear to involve stable association with tyrosine kinase p56(Lck). These results demonstrate a role for CD161 as a novel costimulatory molecule for TCR-mediated recognition of CD1d by human V alpha 24(invt) T cells.  相似文献   

6.
CD43 (leukosialin), a sialylated glycoprotein expressed on the surface of most hematopoietic cells, has been implicated in cell adhesion and signaling. However, its precise physiological function remains unclear. We used mouse CD43 (mCD43)-immunoglobulin enhancer-transgenic (TG) mice to study the role of mCD43 in vivo. Previous work revealed that mCD43 expression on mature B cells in these mice resulted in immunodeficiency to T-dependent (TD) antigens (Ag), possibly by impairing B-T cell interactions. In the present study we have immunized the TG mice with the T-independent (TI) Ag fluorescein-(Fl) lipopolysaccharide (LPS) (TI type 1 Ag) and Fl-Ficoll (TI type 2 Ag). Surprisingly, the mCD43-Ig enhancer expressing mice were impaired in their ability to mount humoral responses to both Fl-LPS and Fl-Ficoll, and had decreased numbers of cells responding to Ag in vivo. Flow cytometric analysis was performed on peritoneal B-1 cells, a population which often plays a major role in humoral responses to TI Ag such as bacterial Ag. This analysis revealed similar B220, IgM and CD5 expression patterns for the TG and nontransgenic (NTG) B-1 cells. In addition, purified peritoneal B-1 cells from TG and NTG mice were able to respond to LPS. Stimulation of splenic B cells in vitro with Fl-LPS and Fl-Ficoll revealed that, in contrast to NTG B cell responses, TG B cell responses could not be enhanced by co-culture with T cells. However, soluble T cell factor enhancement of the TG B cell responses was normal. These data suggest that the mCD43 expression on B cells may inhibit cell interactions that are important for enhanced TI Ag responses. The anti-adhesive forces of mucins in general may thus be critical in regulating both TD and TI humoral responses.  相似文献   

7.
The gene encoding the CD2 mouse cell surface antigen was retrovirally transduced into cord blood CD34+ cells. On infection by culture at the contact of retrovirus-packaging cells, the mCD2 marker was expressed by 30-40% CD34+ cells, that included the most primitive stem cell-enriched Thy-1+ and CD38- subsets. Accordingly, sorted cord blood CD34+Thy-1+ cells could be directly infected in the same conditions. mCD2- transgenic cord blood CD34+ cells were then used to reconstitute human fetal thymus implanted in SCID mice. Five to 8 weeks later, the mCD2 antigen was detected on approximately 10% of the human thymocytes repopulating the thymus grafts and the transgene genome was detected in graft cell DNA by Southern blot. These results demonstrate efficient gene transfer into primitive cord blood hematopoietic cells endowed with lymphoid potential and suggest gene therapy schemes in neonates suffering inherited or acquired-such as HIV infection-disorders of the T-cell lineage.  相似文献   

8.
Recent studies have demonstrated that mature natural killer (NK) cells can be grown from human triple negative (TN; CD3-, CD4-, CD8-) thymocytes, suggesting that a common NK/T cell precursor exists within the thymus that can give rise to both NK cells and T cells under appropriate conditions. In the present study, we have investigated human fetal and postnatal thymus to determine whether NK cells and their precursors exist within this tissue and whether NK cells can be distinguished from T cell progenitors. Based on the surface expression of CD56 (an NK cell-associated antigen) and CD5 (a T cell-associated antigen), three phenotypically distinctive populations of TN thymocytes were identified. CD56+, CD5-; CD56-, CD5-, and CD56-, CD5+. The CD56+, CD5- population of TN thymocytes, although displaying a low cytolytic function against NK sensitive tumor cell targets, were similar in antigenic phenotype to fetal liver NK cells, gave rise to NK cell clones, and were unable to generate T cells in mouse fetal thymic organ cultures (mFTOC). This population of thymocytes represents a relatively mature population of lineage-committed NK cells. The CD56-, CD5- population of TN thymocytes were similar to thymic NK cells in antigenic phenotype and NK cell clonogenic potential. Clones derived from this population of TN thymocytes acquired CD56 surface expression and NK cell cytolytic function. CD56-, CD5- TN thymocytes thus contain a novel population of NK cell-committed precursors. The CD56-, CD5- population of TN thymocytes also contains a small percentage of CD34+ cells, which demonstrate no in vitro clonogenic potential, but possess T cell reconstituting capabilities in mFTOC. The majority of TN thymocytes do not express CD56, but coexpress CD34 and CD5. These CD56-, CD5+, CD34+ cells demonstrate no NK or T cell clonogenic potential, but are extremely efficient in repopulating mFTOC and differentiating into CD3+, CD4+, CD8+ T cells. The results of this investigation have identified NK cells and NK cell precursors in the human thymus and have shown that these cell types are unable to differentiate along the T cell lineage pathway. Thus, while a common NK/T cell progenitor likely exists, once committed to the NK cell lineage these cells no longer have the capacity to develop along the T cell developmental pathway.  相似文献   

9.
The human B lymphocyte-specific Ag, CD22, is a cell adhesion molecule expressed on the surface during a narrow window of B cell development, coincident with surface IgD. A ligand for CD22 has recently been identified on human T cells as the low molecular mass isoform of the leukocyte common Ag, CD45RO. CD22 has been reported to function in the regulation of both T and B cell activation in vitro. In this study, we report the isolation and expression of a molecular cDNA clone encoding the murine homologue of CD22, mCD22. Within their predicted protein sequences, murine and human sequences overall have 62% identity, which includes 18 of 20 extracellular cysteines and six of six cytoplasmic tyrosines. BHK cells transfected with mCD22 cDNA specifically adhere to resting and activated T lymphocytes and in addition bound activated, but not resting, B cells. Five Th clones were analyzed for their ability to adhere to mCD22; two Th0 clones and one Th1 clone bound CD22+ BHK transfectants, but not all T cell clones bound CD22+ cells: another Th1 clone and a Th2 clone did not. mCD22+ BHK transfectants were also specifically bound by the B cell-specific mAb, NIM-R6, demonstrating that this mAb is specific for murine CD22. Human cell lines expressing the counter-receptors for human CD22 were also examined for adhesion to the murine CD22 homologue; the epitope responsible for B cell adhesion to CD22 is conserved, whereas the T cell epitope binding to CD22 is not. The cDNA and mAb to murine CD22 will be useful for defining the in vivo function of CD22.  相似文献   

10.
In rodents, the NKR-P1 family of glycoproteins are preferentially expressed on NK cells and have been implicated in NK cell function. In this study, we describe the characterization and cloning of a human homologue. Human (h)NKR-P1A cDNA was cloned from a NK cell cDNA library by expression in COS7 cells with the use of the DX1 mAb. hNKR-P1A is a type II membrane glycoprotein with characteristic properties of the C-type lectin superfamily. Comparison of the predicted amino acid of human NKR-P1A with rat and mouse NKR-P1 indicates 46% homology. NKR-P1A is on human chromosome 12, the syntenic of mouse chromosome 6, where the murine NKR-P1 genes are located. All rat NK cells express NKR-P1; however, hNKR-P1A is present on only a subset of human NK cells. Although rodent T cells only infrequently express NKR-P1, hNKR-P1A is present on approximately 25% of adult peripheral blood T cells, including both CD4+ and CD8+ T cells, and is expressed preferentially on adult T cells with a "memory" antigenic phenotype. The anti-hNKR-P1A mAb failed to affect lysis of NK-sensitive targets; however, the spontaneous cytotoxicity mediated by certain NK cell clones against the murine P815 cell target was blocked by anti-hNKR-P1A mAb. Our findings demonstrate that NKR-P1A is a human homologue of the rodent NKR-P1 genes and suggest that this molecule may be involved in NK cell function.  相似文献   

11.
The presence of T and NK cells in the human fetal liver and the fact that fetal liver hemopoietic progenitor cells develop into T and NK cells suggest a role for the fetal liver compartment in T and NK cell development. In this work, we show that the capacity of fetal liver progenitors to develop into T cells, in a human/mouse fetal thymic organ culture system, is restricted to an immature subset of CD34+ CD38- cells. No T cell-committed precursors are contained within the more differentiated CD34+ CD38+ population. This conclusion is supported by the observations that no TCR-delta gene rearrangements and no pre-TCR-alpha expression can be detected in this population. However, NK cells were derived from CD34+ CD38- and CD34+ CD38+ fetal liver cells cultured in the presence of IL-15, IL-7, and Flt-3 ligand. Eighty to ninety percent of cells arising from the CD34+ CD38+ population expressed the NK cell-associated markers CD56, CD16, CD94, and NKR-P1A. Several subpopulations of NK cell precursors were identified by differential expression of these receptors. Based on the detection of populations with a similar antigenic profile in freshly isolated fetal liver cells, we propose a model of NK cell differentiation. Collectively, our findings suggest that CD34+ cells differentiate into NK cells, but not into mature T cells, in the human fetal liver.  相似文献   

12.
Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol   总被引:2,自引:0,他引:2  
Mouse CD1d1, a member of the CD1 family of evolutionarily conserved major histocompatibility antigen-like molecules, controls the differentiation and function of a T lymphocyte subset, NK1+ natural T cells, proposed to regulate immune responses. The CD1d1 crystal structure revealed a large hydrophobic binding site occupied by a ligand of unknown chemical nature. Mass spectrometry and metabolic radiolabeling were used to identify cellular glycosylphosphatidylinositol as a major natural ligand of CD1d1. CD1d1 bound glycosylphosphatidylinositol through its phosphatidylinositol aspect with high affinity. Glycosylphosphatidylinositol or another glycolipid could be a candidate natural ligand for CD1d1-restricted T cells.  相似文献   

13.
In vitro studies of human NK cell-mediated cytotoxicity and ADCC against porcine target cells were performed. Stimulation of human PBMC responder cells with either allogeneic or xenogeneic porcine cells led to a marked increase in NK cell reactivity. Maximum reactivity was reached following 3-6 days of in vitro culture. The sensitivity of target cells ranked as follows: K562 > porcine PHA-induced lymphoblasts > resting porcine PBMC. Limiting dilution analysis showed that allo- and xeno-stimulation in vitro led to differentiation of similar frequencies of effector NK cells. Split culture experiments showed that single NK effector cells were cytotoxic against both K562 and porcine lymphoblasts, demonstrating that individual NK cells lack species specificity. NK effector cell generation stimulated by xenogeneic cells was cyclosporin A (CsA) sensitive and dependent on the presence of autologous responder T lymphocytes, a dependence that was completely reconstituted by the sole addition of human IL-2. Xenostimulation of enriched CD3+ cells also led to a preferential appearance of CD16+ or CD56+ lymphoblasts. Natural xenoreactive human anti-porcine antibodies are mainly of IgM and IgG2 subclasses, but antibodies in xenoimmunised patients reactive against porcine lymphocytes and fetal porcine islet cells were also of IgG1 and IgG3 subclasses. The same subclass distribution was found among antibodies specific for gal(alpha)1,3 gal epitopes as shown by tests performed with alpha1,3 galactosyltransferase-transfected Raji cells (human Burkitt lymphoma cells). Natural antibodies did not mediate ADCC, whereas gal(alpha)1,3 gal-specific antibodies in sera from xenoimmunised patients did. Fetal porcine islet cells were sensitive to human NK cell-mediated cytotoxicity and to ADCC mediated by xenoimmune sera.  相似文献   

14.
Modulation of VLA integrins was studied in several human T cell clones upon specific and nonspecific cellular activation. Human activated T lymphocytes down-regulated both alpha 4 beta 1 and alpha 4 beta 7 integrins upon specific recognition of alloantigens (cytotoxic T cells) or in the presence of Staphylococcus enterotoxin B (superantigen recognizing noncytotoxic T cells). In contrast, the expression of other membrane integrins, such as VLA-1 and VLA-5 integrins, was not modified. Down-regulation of alpha 4 beta 1 and alpha 4 beta 7 integrins was observed as early as 3 h after stimulation, lasted later than 72 h and was partially inhibited by cytochalasin D. Interestingly, neither target cells nor NK cells modulated CD49d expression after interaction with T cells of K562, respectively, suggesting that CD49d expression was linked to specific T cell activation. The down-regulation of the CD49d chain in T cell clones stimulated with immobilized anti-CD3 mAbs confirmed the role of TCR-mediated activation in CD49d regulation. However, the CD3-independent cellular aggregation induced by soluble anti-CD43 mAb was also able to strongly down-regulate alpha 4 beta 1 and alpha 4 beta 7. The present work shows the first evidence that CD49d subunit-bearing integrin expression is distinctly regulated from other integrins after Ag or superantigen recognition by human activated T cells. CD49d modulation may be relevant for the traffic and tissue localization of locally activated T cells during immune responses.  相似文献   

15.
2B4 is a cell surface glycoprotein related to CD2 and implicated in the regulation of natural killer and T lymphocyte function. A recombinant protein containing the extracellular region of mouse (m)2B4 attached to avidin-coated fluorescent beads bound to rodent cells, and binding was completely blocked by CD48 monoclonal antibodies (mAbs). Using surface plasmon resonance, we showed that purified soluble mCD48 bound m2B4 with a six- to ninefold higher affinity (Kd approximately 16 microM at 37 degreesC) than its other ligand, CD2. Human CD48 bound human 2B4 with a similar affinity (Kd approximately 8 microM). The finding of an additional ligand for CD48 provides an explanation for distinct functional effects observed on perturbing CD2 and CD48 with mAbs or by genetic manipulation.  相似文献   

16.
Bcl-2 is a major anti-apoptotic protein expressed in many normal and malignant cells. Recently, low to absent expression was reported in human natural killer (NK) cells cultured in serum-free media which could be induced with stem cell factor. We investigated the expression of bcl-2 protein of NK cells in normal blood donors and compared the bcl-2 expression in CD56+ NK cells with CD3+ T cells. To determine bcl-2 reactivity, a three-color flow-cytometric technique was used. CD56+ CD3- NK cells had an average bcl-2 expression of 83% compared with CD3+ T cells. CD56 and CD3 double positive T cells had an average content of 111% compared with all peripheral CD3+ T lymphocytes. When peripheral mononuclear cells were cultured with interleukin-2 (IL-2), bcl-2 could be upregulated by IL-2 in all cell populations studied. The induction of bcl-2 in these cell populations paralleled the induction in CD56- T lymphocytes cultured under identical conditions. The induction of bcl-2 by IL-2 was confirmed by Western blotting. The maximum induction of bcl-2 by IL-2 was observed at an IL-2 dose of 100-1,000 U/ml. Our data confirm the anti-apoptotic protein bcl-2 as an activation- or proliferation-associated marker of normal NK cells which can be induced by IL-2.  相似文献   

17.
Human phagocytes recognize bacterial LPS (endotoxin) through membrane CD14 (mCD14), a proinflammatory LPS receptor. This study tested the hypothesis that anti-LPS Abs neutralize endotoxin by blocking cellular uptake through mCD14. Ab-associated changes in the uptake and cellular distribution of FITC-LPS were assessed by flow cytometry and laser scanning confocal microscopy in human CD14-transfected Chinese hamster ovary fibroblasts (CHO-CD14 cells) and human peripheral blood monocytes. LPS core- and O-side chain-specific mAbs inhibited mCD14-mediated LPS uptake by both cell types in the presence of serum. O-side chain-specific mAb concurrently enhanced complement-dependent LPS uptake by monocytes through complement receptor-1 (CR1) and uptake by CHO-CD14 cells involving another heat-labile serum factor(s) and cell-associated recognition molecule(s). Core-specific mAb inhibited mCD14-mediated uptake of homologous and heterologous LPS, while producing less concurrent enhancement of non-mCD14-mediated LPS uptake. The modulation by anti-LPS mAbs of mCD14-mediated LPS uptake was associated with inhibition of LPS-induced nuclear factor-kappaB (NF-kappaB) translocation and TNF-alpha secretion in CHO-CD14 cells and monocytes, respectively, while mAb enhancement of non-mCD14-mediated LPS uptake stimulated these activities. LPS-specific Abs thus mediate anti-inflammatory and proinflammatory functions, respectively, by preventing target cell uptake of LPS through mCD14 and augmenting uptake through CR1 or other cell receptors.  相似文献   

18.
The role played by NK- and NK1.1-expressing T cells in CD4 T cell activation and induction of immune responses in vivo is controversial. These effector cells of the innate immune response are hypothesized to play a pivotal role in shaping initial T cell activation, with some groups reporting that classical NK cells are required for optimal Th1-like T cell activation, and others supporting a role for NK1.1+ alphabeta T cells in Th2 generation. Here, we examine the impact of in vivo NK cell depletion on the development of exogenous Ag-specific cytokine and Ab responses using a murine model of human immediate hypersensitivity. OVA-specific immune responses were induced in 1) C57Bl/6 bg/bg and bg/+ mice, 2) BALB/c mice pretreated with anti-asialoGM1 or control Ab, and 3) C57Bl/6 mice depleted of NK1.1-expressing cells by in vivo administration of anti-NK1.1 mAb PK136. Depletion efficacy was assessed by functional assays and flow cytometric analysis. Each of these approaches indicated that depletion of NK cells and NK1.1+ CD4+ T cells fails to alter the Th1:Th2 balance of Ag-driven cytokine synthesis, as indicated by OVA-stimulated cytokine synthesis in primary bulk culture. Similarly, the kinetics and intensity of effector responses such as OVA-specific IgG2a and IgE synthesis were neither increased nor decreased in any of the three models examined. The results argue that NK cells and peripheral NK1.1+ T cells do not play an essential role in shaping the induction of Ag-specific immune responses to soluble exogenous Ags, the most common class of inhalant allergen.  相似文献   

19.
Activation of human natural killer (NK) cells involves sequential events including cytokine production and induction of cell surface molecules, resulting in the enhancement of cytolytic activity. To delineate the activation process of NK cells, we generated murine monoclonal antibodies (mAbs) against YT, a human large granular lymphocyte/natural killer (LGL/NK) cell line. Among the mAbs reactive with YT cells, one mAb, termed 2B9, was noted because of the lack of reactivity with most of the human T- and B-cell lines tested. In fresh peripheral blood mononuclear cells (PBMC), however, the majority of cells expressing this antigen (Ag) were T cells but not CD16+ nor CD56+ NK cells. Since YT cells showed an activated phenotype expressing interleukin-2 (IL-2) receptor alpha chain, we examined whether 2B9 Ag could be induced on normal human peripheral blood NK cells by cytokines known to activate NK cells. The 2B9 Ag was induced on NK cells by IL-2, IL-12 or IL-15 while no induction was observed by interferon-gamma (IFN-gamma). Biochemical analysis showed that anti-2B9 mAb recognized a 115 kDa molecule in YT cells. A cDNA clone encoding the 2B9 Ag was isolated from a cDNA expression library of YT cells and its sequence was identical to CD26 cDNA although it was not of full length. Transient expression of the 2B9 cDNA on COS-7 cells revealed that this cDNA encodes the antigenic epitope(s) recognized by anti-2B9 mAb as well as Ta1, an anti-CD26 mAb. These results showed that the 2B9 Ag is identical to CD26, and demonstrated that CD26 is an activation antigen on CD16+ CD56+ NK cells inducible by IL-2, IL-12 or IL-15.  相似文献   

20.
Natural killer (NK) cells mediate MHC-unrestricted cytolysis of virus-infected cells and tumor cells. In the adult mouse, NK cells are bone marrow-derived lymphocytes that mature predominantly in extrathymic locations but have also been suggested to share a common intrathymic progenitor with T lymphocytes. However, mature NK cells are thought to be absent in mouse fetal ontogeny. We report the existence of thymocytes with a mature NK cell phenotype (NK1.1+/CD117-) as early as day 13 of gestation, approximately 3 days before the appearance of CD4+/CD8+ cells in T lymphocyte development. These mature fetal thymic NK cells express genes associated with NK cell effector function and, when freshly isolated, display MHC-unrestricted cytolytic activity in vitro. Moreover, the capacity of fetal thymic NK cells for sustained growth both in vitro and in vivo, in addition to their close phenotypic resemblance to early precursor thymocytes, confounds previous assessments of NK lineage precursor function. Thus, mature NK cells may have been inadvertently included in previous attempts to identify multipotent and bipotent precursor thymocytes. These results provide the first evidence of functional NK lymphocytes in mouse fetal ontogeny and demonstrate that NK cell maturation precedes alpha beta T cell development in the fetal thymus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号