首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微波辅助溶胶-凝胶法合成锂离子电池负极材料Li_4Ti_5O_(12)   总被引:2,自引:0,他引:2  
以微波辅助溶胶-凝胶法合成Li4Ti5O12、Al或C掺杂的Li4Ti5O12样品。用X射线衍射仪、扫描电子显微镜分别表征所得产物的结构和形貌,研究不同样品在恒流充放电条件下的电化学性能。结果表明:合成Li4Ti5O12粉体的最佳微波处理条件为800℃、40min;微波热处理合成样品颗粒尺寸为100nm左右,掺Al或C样品颗粒的分散性要优于未掺样品的。首次充放电结果表明:所有样品的放电平台平稳,掺Al或C样品的首次放电容量均高于未掺样品的,掺C样品的首次放电容量为162mA·h/g,更接近Li4Ti5O12的理论容量(175mA·h/g)。  相似文献   

2.
采用溶胶-凝胶法,以抗坏血酸作为碳源并添加表面活性剂聚乙二醇(PEG)合成纳米复合材料Li2FeSiO4/C。研究了PEG对Li2FeSiO4/C结构及电化学性能的影响。结果表明:添加PEG后合成的纳米Li2FeSiO4/C颗粒细小(约50 nm),表面均匀包覆一层碳。因此,纳米复合粉体Li2FeSiO4/C在充放电过程中具有更小的扩散阻力和更高的电导率,而均匀的碳层能够减少活性物质与电解液之间副反应的发生。室温下以C/16倍率充放电,首次放电比容量为138.2mA h/g,并且在不同倍率下循环40次后仍保持在130.4 mA h/g。  相似文献   

3.
采用超声辅助溶液法在尖晶石Li Mn_2O_4表面包覆LiAlO_2。通过X射线衍射、扫描电子显微镜、恒电流充放电及交流阻抗技术分析合成材料的结构、粒径、形貌及电化学性能。XRD测试结果表明:LiAlO_2包覆Li Mn_2O_4与Li Mn_2O_4的X射线衍射结果相差不大,包覆后的样品仍为尖晶石结构,没有出现杂质相。室温下0.2 C充放电时,包覆0.5%、1%、3%LiAlO_2的LiMn_2O_4首次放电比容量分别为123.3、120.2 m A·h/g和118.7 m A·h/g,低于未包覆Li Mn_2O_4的125.4 m A·h/g,但在1C和5C高倍率下,包覆3%LiAl O_2的Li Mn_2O_4放电比容量分别为107.8 m A·h/g和85.6 m A·h/g,高于未包覆的104.2 m A·h/g和64.1 m A·h/g。室温下以1 C倍率循环50次后,表面包覆3%LiAlO_2的Li Mn_2O_4的容量保持率比未包覆高出2.9%。  相似文献   

4.
以醇胺类离子液体二乙醇胺乙酸盐为反应介质,钛酸四丁酯与乙酸锂为原料,低温常压下合成前驱体,再在高温下制备Li4Ti5O12负极材料.用X射线衍射、扫描电子显微镜和恒电流充放电分别测定材料的结构、形貌以及材料的电化学性能.结果表明:在700℃烧结12h,所得样品具有300nm的粒径,并表现出优良的电化学性能,在0.1C倍率下放电容量为162.8 mA·h/g,20次循环后比电容量保持在150.3 mA.h/g.  相似文献   

5.
采用微波水热法和水热法制备锂离子电池负极材料Li4Ti5O12,比较了合成方法对Li4Ti5O12电化学性能的影响,考察了其结构和形貌及电化学性能.结果表明,两种方法均合成了尖晶石结构的Li4Ti5O12,微波水热法合成的样品电化学性能较好,颗粒尺寸为200~300 nm,分布均匀,比表面积较大,在1 C的放电条件下,首次放电比容量为151.33 mA·h/g,97次循环后放电比容量为140.94 mA·h/g,保持率为93.14%,且电化学阻抗较小.  相似文献   

6.
以醋酸锂、磷酸、七水合硫酸亚铁为原料,聚乙二醇为分散剂,通过一步水热法制备得到中空八面体LiFePO_4锂离子电池正极材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试仪对样品晶型、形电化学性能进行了表征测试。研究结果表明,在2.5~4.2 V电压范围内,以0.1 C(17 mA/g)倍率进行充放电,样品首次放电比容量为129.6 mA·h/g;0.2、0.5、1、2和5 C的充放电倍率时,首次放电比容量分别达到123.6、119.7、114.1、99.5g和90.6 mA·h/g。10 C的充放电倍率时首次放电比容量为84.3 mA·h/g,说明中空八面体LiFePO_4在高倍率下表现出优异的电化学性能。  相似文献   

7.
以LiH2PO4、LiF和V2O5为原料,蔗糖为还原剂,用碳热还原法合成了Li3V2[(PO4)1-xFx]3/C(x=0、0.02、0.05、0.08、0.10和0.15),并用X射线衍射、Fourier变换红外光谱、循环伏安、交流阻抗谱和恒流充放电技术研究了F-掺杂对材料结构和电化学性能的影响.结果表明:F-掺杂Li3V2(PO4)3/C与纯Li3V2(PO4)3/C均为单斜结构,但少量的F-掺杂可提高电极反应可逆程度和电导率,降低电荷传递阻抗;在所得的F-掺杂材料中,Li3V2[(PO4)0.95F0.05]3/C具有较好的电化学性能.在3.0~4.2V (vs.Li/Li+)循环时,电极的0.5C放电容量为124.4 mA·h/g,50次循环后容量保持率为98.5%,15C下的放电容量为84.7mA·h/g,50次循环后容量保持率为97.4%,而Li3V2(PO4)3/C的仅为59.2 mA·h/g和89.0%.  相似文献   

8.
采用液相共沉淀-固相焙烧合成了橄榄石型磷酸亚铁锂(LiFePO4)正极材料,用X射线衍射(XRD)、扫描电镜(SEM)和恒流充放电测试等方法对产物物相结构、表观形貌和电化学性能进行了表征和分析.纯相材料首次放电比容量达到90.6 mA·h/g,循环5次后,放电比容量为75.94 mA·h/g.为解决首次放电比容量低下以及材料循环性能差的问题,采取不同碳源掺杂对材料进行改进,最后得到LiFePO4/C复合正极材料,0.05 C首次放电比容量达到158.8 mA·h/g.  相似文献   

9.
液相法合成高容量LiFePO4/C复合正极材料   总被引:8,自引:1,他引:7  
采用液相共沉淀法合成了纯相橄榄石型LiFePO4和LiFePO4/C复合正极材料。利用原子吸收(AAS)、X射线衍射(XRD)、扫描电镜(SEM)、振实密度测定等方法对其进行表征,并组装成电池研究其电化学性能。结果表明:LiFePO4和LiFePO4/C都具有单一的橄榄石型晶体结构,且前者的振实密度可达1.67 g/cm2,掺碳后制成的LiFePO4/C振实密度有所降低,但充放电平台非常平稳。与纯相LiFePO4相比,LiFePO4/C具有更高的放电比容量和循环性能,室温下以0.2 mA/cm2和0.4 mA/cm2电流密度充放电,首次放电比容量分别达到158.1 mA.h/g、150.0 mA.h/g。充放电循环20次后放电比容量仍分别保持在154.2 mA.h/g,137.2 mA.h/g。  相似文献   

10.
燕子鹏  蔡舒  周幸  苗丽娟 《硅酸盐学报》2012,(5):734-735,736,737,738
采用溶胶–凝胶法,以抗坏血酸作为碳源并添加表面活性剂聚乙二醇(PEG)合成纳米复合材料Li2FeSiO4/C。研究了PEG对Li2FeSiO4/C结构及电化学性能的影响。结果表明:添加PEG后合成的纳米Li2FeSiO4/C颗粒细小(约50nm),表面均匀包覆一层碳。因此,纳米复合粉体Li2FeSiO4/C在充放电过程中具有更小的扩散阻力和更高的电导率,而均匀的碳层能够减少活性物质与电解液之间副反应的发生。室温下以C/16倍率充放电,首次放电比容量为138.2mAh/g,并且在不同倍率下循环40次后仍保持在130.4mAh/g。  相似文献   

11.
刘金练 《精细化工》2011,28(11):1095-1098
采用固相法分别以不同原料合成尖晶石LiMn2O4。采用X射线衍射、扫描电子显微镜、循环伏安及恒电流充放电等技术检测和分析合成产物的物相、形貌及电化学性能。研究表明,与采用电解MnO2为原料合成的LiMn2 O4相比,采用Mn3 O4为原料合成的LiMn2 O4粉末X射线衍射峰强度更大,室温下以0.2 C倍率充放电循环30次时,首次放电比容量和容量保持率分别为128.7 mA.h/g和98.4%,高于以电解MnO2为原料合成LiMn2 O4的123.7 mA.h/g和85.0%。55℃循环时,采用Mn3 O4为原料合成的LiMn2 O4容量保持率比采用电解MnO2为原料合成LiMn2O4的高10.7%。  相似文献   

12.
共沉淀法合成磷酸铁锂掺碳复合正极材料   总被引:2,自引:0,他引:2  
采用共沉淀法合成了纯相橄榄石型磷酸铁锂(LiFePO4)和磷酸铁锂掺碳(LiFePO4/C)复合正极材料.利用X射线衍射(XRD)、原子吸收(AAS)、扫描电镜(SEM)、红外吸收(FT-IR)、振实密度测定等方法对其进行表征,并组装成电池研究其电化学性能.结果表明:HFePO4和LiFePO4/C具有单一的橄榄石型晶体结构,前者的振实密度可达1.58 g/cm2,LiFePO4/C振实密度有所降低,但充放电平台非常平稳.与纯相LiFePO4相比,LiFePO4/C具有更高的放电比容量和循环性能,室温下以0.05 C和0.1 C倍率电流充放电,首次放电比容量达到158.1,150.0 mA·k/g.充放电循环20次后放电比容量仍保持在154.2,137.2 mA·h/g.  相似文献   

13.
掺杂与表面包覆对尖晶石型LiMn2O4电化学性能的影响   总被引:1,自引:0,他引:1  
胡拥军  李义兵  吴四贵 《化工进展》2007,26(4):563-566,576
用固相法制备了Cr3 和F-同时掺杂的尖晶石型LiMn2O4正极材料,并对掺杂材料进行氧化铝表面包覆改性,用扫描电子显微镜和X射线衍射研究了材料的表面形貌和晶体结构,用充放电实验和交流阻抗技术测试了材料的电化学性能。结果表明:LiMn2O4在掺杂Cr3 和F-及表面包覆氧化铝后仍为尖晶石型结构,随掺杂和包覆量的增加,材料首次放电容量降低,但循环性能明显改善,其中未掺杂、掺杂量为0.10和表面包覆0.3%的氧化铝的材料室温首次放电容量分别为125.3 mA·h/g、117.5 mA·h/g和113.7 mA·h/g,循环25次后容量保持率分别为82.7%、91.5%和93.6%,而55℃下25次循环后放电容量及其保持率以表面包覆氧化铝的最佳,分别达到104.2 mA·h/g和92.1%。  相似文献   

14.
以微波辅助氯化胆碱-乙二醇合成的纺锤体LiMnPO_4纳米颗粒为原料,采用喷雾干燥法制备LiMnPO_4/C多孔微球,采用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)、拉曼光谱(Raman)、比表面积(BET)及孔径分析(BJH)、恒流充放电技术、循环伏安(CV)、电化学阻抗谱(EIS)等研究了焙烧时间对LiMnPO_4/C多孔微球的结构、形貌和电化学性能的影响。结果表明:在焙烧时间为5 h时,合成材料的电化学性能最好,1C倍率下首次放电比容量为140 mA·h/g,100次循环后容量保有率为95%,5C下放电比容量为119 mA·h/g,表现出了良好的循环性能和倍率性能。  相似文献   

15.
采用固相反应法制备了 Li2FeSiO4-xSx/C (x=0,0.01,0.02,0.03)纳米正极材料。通过 X 射线 衍射(XRD)、扫描电子显微镜(SEM)、能量色散光谱仪(EDS)、X 射线光电子能谱(XPS)、拉 曼光谱(Raman)、红外吸收光谱(FTIR)及恒流充放电测试研究了材料的微观形貌、晶体结构和 电化学性能。结果表明,Li2FeSiO3.98S0.02/C 形貌呈纳米球状,平均粒径为45.38nm,纳米尺寸的粒径有利于缩短Li+的扩散途径;碳包覆抑制纳米晶粒的生长,可以增强材料的导电性;硫掺杂能扩大材料的隧道间距,加快了Li+的迁移速率。Li2FeSiO3.98S0.02/C 表现出较高的充放电比容量、优异的倍率性能以及循环稳定性,在 0.1C 下首次放电比容量高达 180.1mAhg -1,在 10C 下放电比容量为 85mAhg-1,1C 下循环 100 次后的容量保持率为 91.3%。  相似文献   

16.
采用同相法制备正极材料LiNi1/3Co1/3Mn1/3O2,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)/透射电镜(TEM)分析材料的结构和形貌特征,用LAND电池测试系统测试材料的电化学性能(充放电容量和循环性能等).以LiOH·H2O,H2C2O4·2H2O,Ni(AC)2·4H2O,Co(AC)2·4H2O和Mn(AC)2·4H2O为原料,采用固相法在不同煅烧温度和煅烧时间下制备的层状正极材料LiNi1/3Co1/3Mn1/3O2具有典型的α-NaFeO2型层状结构特征,晶型结构完整.电化学性能测试结果表明,在850℃下保温15 h合成的正极材料电化学性能最优,在电流密度为120 mA/g、充放电电压在2.75~4.5 V时,经30次循环后放电比容量为163.5 mA·h/g,容量保持率为94%;50次循环后为157.2 mA·h/g,容量保持率为90.8%.  相似文献   

17.
以原位聚合聚吡咯控制结晶法合成的介孔FePO4/PPy为前躯体制备了锂离子电池纳米LiFePO4/C正极材料.用X射线衍射、扫描电子显微镜、透射电子显微镜以及充放电测试和交流阻抗等研究了吡咯用量对合成材料的结构、形貌和电化学性能的影响.结果表明:LiFePO4/C正极材料与FePO4/PPy前驱体有相似的形貌,吡咯的用量对材料的电化学性能影响较大,当吡咯的加入量为1.0mL时,材料粒径较小,分布均匀,电化学性能最优,在0.1C倍率下的放电比容量为149.0 mA·h/g,且循环过程中容量保持率高.  相似文献   

18.
以纳米TiO2和LiNO3为原料,尿素为燃料,燃烧法合成了锂离子电池负极材料Li4Ti5O12. 利用XRD、SEM和恒电流充放电、循环伏安和交流阻抗对其进行表征. 结果表明,预设炉温850℃,尿素与锂摩尔比1,焙烧8 h,制备得到平均粒径小于500 nm、粒度分布均匀的纯相尖晶石型结构Li4Ti5O12,并具有良好的电化学性能,具有1.5 V充放电平台,在0.1 C倍率下(1 C=170 mA·h/g),其首次充放电容量达到168 mA·h/g,经过100次循环后放电比容量仍有162 mA·h/g,容量保持率96.4%.  相似文献   

19.
吴显明 《精细化工》2014,31(12):1427-1430
采用重质化学二氧化锰制备尖晶石LiMn2O4。采用X射线衍射、扫描电镜、恒电流充放电等技术对合成产物进行物相、形貌和电化学分析。结果表明:采用重质化学二氧化锰与电解二氧化锰制备的LiMn2O4粉末具有相似的X射线衍射结果。采用重质化学二氧化锰制备的LiMn2O4在0.2C、0.5C、1C、2C及3C放电倍率下放电比容量分别为108.5、104.7、97.3、86.5mA·h/g和70.7mA·h/g,以电解二氧化锰为原料制备的LiMn2O4放电比容量则分别为106.1、103.4、99.1、89.2mA·h/g和75.5mA·h/g。两种原料制备的LiMn2O4在不同倍率下的比容量和充放电循环性能差别不大,采用重质化学二氧化锰制备的锰酸锂电化学性质可以达到或超过采用电解二氧化锰制备的锰酸锂。  相似文献   

20.
采用机械活化-高温固相法制备了锂离子电池正极材料LiCo1/3Mn1/3Ni1/3O2研究球磨方式与n(Li)/n(M)对合成产物结构与性能的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构、形貌及电化学性能进行了表征。研究结果表明,优化试验条件下制备得到的材料具有良好的循环性能,在电压范围2.7~4.2V内,充放电的电流值为20mA/g时,初始放电比容量为160mA·h/g,30次循环后容量保持率为96.98%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号