首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isotopic ratios of 14C at natural levels can be efficiently measured with accelerator mass spectrometry (AMS). In compact AMS systems, 13CH and 12CH2 molecular interferences are destroyed in collisions with the stripper gas, a process which can be described by dissociation cross sections. These dissociation cross sections determine the gas areal density required for sufficient attenuation of the interfering molecular beams, and are therefore key parameters in the effort to further reduce the terminal voltage and thus the size of the AMS system. We measured the dissociation cross sections of 13CH and 12CH2 in N2 and He in the energy range of 80-250 keV. In N2, cross sections were constant for energies above 100 keV with average values per molecule of (8.1 ± 0.4) × 10−16 cm2 for 13CH and (9.5 ± 0.5) × 10−16 cm2 for 12CH2. In He, cross sections were constant over the full measured range of 80-150 keV with average values of (4.2 ± 0.3) × 10− 16 cm2 and (4.8 ± 0.4) × 10−16 cm2, respectively. A considerable reduction of the terminal voltage from the currently used 200 kV while using N2 for 13CH and 12CH2 molecule dissociation is not possible: the required N2 areal densities of ∼1.4 μg/cm2, consequential angular straggling and a decreasing 1+ charge state fraction would reduce the ion beam transmission too much. This is not the case for He: sufficient molecule dissociation can be obtained with gas densities of ∼0.4 μg/cm2, for which angular straggling is relatively small. In addition, the 1+ charge state fraction still increases at lower stripping energies. Thus, the usage of He for stripping and molecule dissociation might allow the development of even smaller 14C-AMS systems than available today.  相似文献   

2.
Enthalpy increment measurements on La2Te3O9(s) and La2Te4O11(s) were carried out using a Calvet micro-calorimeter. The enthalpy values were analyzed using the non-linear curve fitting method. The dependence of enthalpy increments with temperature was given as: (T) − (298.15 K) (J mol−1) = 360.70T + 0.00409T2 + 133.568 × 105/T − 149 923 (373 ? T (K) ? 936) for La2Te3O9 and (T) − (298.15 K) (J mol−1) = 331.927T + 0.0549T2 + 29.3623 × 105/T − 114 587 (373 ? T (K) ? 936) for La2Te4O11.  相似文献   

3.
ZnAl2O4 spinels have been irradiated with several ions (Ne, S, Kr and Xe) at the IRRSUD beamline of the GANIL facility, in order to determine irradiation conditions (stopping power, fluence) for amorphisation. We observed by transmission electron microscopy (TEM) that with Xe ions at 92 MeV, individual ion tracks are still crystalline, whereas an amorphisation starts below a fluence of 5 × 1012 cm−2 up to a total amorphisation between 1 × 1013 and 1 × 1014 cm−2. The coexistence of amorphous and crystalline domains in the same pristine grain is clearly visible in the TEM images. All the crystalline domains remain close to the same orientation as the original grain. According to TEM and X-ray Diffraction (XRD) results, the stopping power threshold for amorphisation is between 9 and 12 keV nm−1.  相似文献   

4.
The thermal conductivities of (U,Pu,Np)O2 solid solutions were studied at temperatures from 900 to 1770 K. Thermal conductivities were obtained from the thermal diffusivity measured by the laser flash method. The thermal conductivities obtained below 1400 K were analyzed with the data of (U,Pu,Am)O2 obtained previously, assuming that the B-value was constant, and could be expressed by a classical phonon transport model, λ = (A + BT)−1, A(z1, z2) = 3.583 × 10−1 × z1 + 6.317 × 10−2 × z2 + 1.595 × 10−2 (m K/W) and B = 2.493 × 10−4 (m/W), where z1 and z2 are the contents of Am- and Np-oxides. It was found that the A-values increased linearly with increasing Np- and Am-oxide contents slightly, and the effect of Np-oxide content on A-values was smaller than that of Am-oxide content. The results obtained from the theoretical calculation based on the classical phonon transport model showed good agreement with the experimental results.  相似文献   

5.
The reactivity of H2 towards UO22+ has been studied experimentally using a PEEK coated autoclave where the UO22+ concentration in aqueous solution containing 2 mM carbonate was measured as a function of time at pH2∼40 bar. The experiments were performed in the temperature interval 74-100 °C. In addition, the suggested catalytic activity of UO2 on the reduction of UO22+ by H2 was investigated. The results clearly show that H2 is capable of reducing UO22+ to UO2 without the presence of a catalyst. The reaction is of first order with respect to UO22+. The activation energy for the process is 130 ± 24 kJ mol−1 and the rate constant is k298K=3.6×10−9 l mol−1 s−1. The activation enthalpy and entropy for the process was determined to 126 kJ mol−1 and 16.5 J mol−1 K−1, respectively. Traces of oxygen were shown to inhibit the reduction process. Hence, the suggested catalytic activity of freshly precipitated UO2 on the reduction of UO22+ by H2 could not be confirmed.  相似文献   

6.
The electrical properties of annealed, fully metamict gadolinite REEFe2+Be2Si2O10 are studied as a function of annealing temperature. Changes due to annealing are also probed by 57Fe Mössbauer spectroscopy and X-ray diffraction. The electrical conductivity measured at = 100 Hz between 110 and 750 K varies markedly, ranging from 10−10 to 10−6 S m−1 for untreated samples and 10−9 to 10−3 S m−1 for sample annealed in argon at 1373 K. Average measured activation energies for electrical conduction are 0.47 and 0.63 eV for ranges of 400-450 K and 500-600 K, respectively. The dielectric permittivity shows strong dispersion effects above 235 K. After high temperature annealing, the electrical conductivity shows a marked dispersion below 604 K. The combination of polaron hopping and hydroxyl anion migration is proposed for the electrical conduction mechanism.  相似文献   

7.
Stoichiometries in (U0.7Pu0.3)Ox and (U0.8Pu0.2)Ox were analyzed with the experimental data of oxygen potential based on point defect chemistry. The relationship between the deviation x of stoichiometric composition and the oxygen partial pressure PO2 was evaluated using a Kröger-Vink diagram. The concentrations of the point defects in uranium and plutonium mixed oxide (MOX) were estimated from the measurement data of oxygen potentials as functions of temperature and PO2. The analysis results showed that x was proportional to near the stoichiometric region of both (U0.7Pu0.3)Ox and (U0.8Pu0.2)Ox, which suggested that intrinsic ionization was the dominant defect. A model to calculate oxygen potential was derived and it represented the experimental data accurately. Further, the model estimated the thermodynamic data, and , of stoichiometric (U0.7Pu0.3)O2.00 and (U0.8Pu0.2)O2.00 as −552.5 kJ·mol−1 and −149.7 J·mol−1, and −674.0 kJ · mol-1 and −219.4 J · mol−1, respectively.  相似文献   

8.
The molar enthalpies of solution of CdMoO4(s), CdO(s), Na2 MoO4(s) and NaF(s) in (10 mol HF(aq) + 4.41 mol H2O2(aq)) dm−3 have been measured using an isoperibol type calorimeter. From these results and other auxiliary data, the standard molar enthalpy of formation of CdMoO4(s) has been calculated to be ΔfH°(298.15 K) = −(1034.3 ± 5.7) kJ mol−1. This value of enthalpy of formation of CdMoO4(s) agrees well with the estimated enthalpy of formation of this compound. There is no other report on the thermodynamic property measurements on this compound.  相似文献   

9.
We have recently synthesized “stuffed” (i.e., excess Lu) Lu2(Ti2−xLux)O7−x/2 (x = 0, 0.4 and 0.67) compounds using conventional ceramic processing. X-ray diffraction measurements indicate that stuffing more Lu3+ cations into the oxide structure leads eventually to an order-to-disorder (O-D) transition, from an ordered pyrochlore to a disordered fluorite crystal structure. At the maximum deviation in stoichiometry (x = 0.67), the Lu3+ and Ti4+ ions become completely randomized on the cation sublattices, and the oxygen “vacancies” are randomized on the anion sublattice. Samples were irradiated with 400 keV Ne2+ ions to fluences ranging from 1 × 1015 to 1 × 1016 ions/cm2 at cryogenic temperatures (∼77 K). Ion irradiation effects in these samples were examined by using grazing incident X-ray diffraction. The results show that the ion irradiation tolerance increases with disordering extent in the non-stoichiometric Lu2(Ti2−xLux)O7−x/2.  相似文献   

10.
Thin films of Fe3O4 have been deposited on single crystal MgO(1 0 0) and Si(1 0 0) substrates using pulsed laser deposition. Films grown on MgO substrate are epitaxial with c-axis orientation whereas, films on Si substrate are highly 〈1 1 1〉 oriented. Film thicknesses are 150 nm. These films have been irradiated with 200 MeV Ag ions. We study the effect of the irradiation on structural and electrical transport properties of these films. The fluence value of irradiation has been varied in the range of 5 × 1010 ions/cm2 to 1 × 1012 ions/cm2. We compare the irradiation induced modifications on various physical properties between the c-axis oriented epitaxial film and non epitaxial but 〈1 1 1〉 oriented film. The pristine film on Si substrate shows Verwey transition (TV) close to 125 K, which is higher than generally observed in single crystals (121 K). After the irradiation with the 5 × 1010 ions/cm2 fluence value, TV shifts to 122 K, closer to the single crystal value. However, with the higher fluence (1 × 1012 ions/cm2) irradiation, TV again shifts to 125 K.  相似文献   

11.
The sample of pyrochlore-based ceramic doped with a 244Cm isotope with a target composition Gd1.935Cm0.065 TiZrO7 was prepared by cold pressing and sintering. The pyrochlore structure phase was predominant in the sample but minor perovskite and gadolinium zirconate (ideally Gd2Zr2O7−x) were also present. The Ti/Zr pyrochlore phase was rendered amorphous at a dose of 4.6 × 1018 α-decays/g (0.60 dpa). Volume expansion of the pyrochlore lattice was found to be 2.7 vol.% at a dose of 3.85 × 1018 α-decays/g.  相似文献   

12.
The solubility of uranium dioxide (UO2) was measured in real and synthetic Boom Clay waters with varying concentrations of humic acids and carbonate under reducing conditions at 20 °C. Uranium concentrations in function of time suggest the reduction of U(VI) to U(IV) by the humic acids which is occurring faster in real clay water than in synthetic clay waters. Humic acids induce also a competition to complex U(VI) in carbonate-containing solution, but they are not able to control the uranium concentration at high bicarbonate concentration (0.02 mol dm−3). Nevertheless they may play a role at low carbonate concentration. In our experimental conditions, the geochemical calculations indicate that two uranium secondary phases (U4O9 and UO2(c)) are susceptible to control the uranium concentration in solution. These calculations are in good agreement with results of the X-ray photoelectron spectroscopy. At the end of tests, uranium concentrations reach steady-state values between 3 × 10−8 and 5 × 10−8 mol dm−3 in the bicarbonate-rich solutions. Although these concentrations are considered as conservative, they are 10-100 times higher than in natural Boom Clay. The consequence is that spent fuel could slowly dissolve in the interstitial clay water undersaturated with respect to UO2/UO2+x of the fuel.  相似文献   

13.
Interference structures in the ejected electron spectra for 30 MeV O5,8+ + O2 are investigated. The measured electron yields were studied for electron energies from 5 to 400 eV and observation angles of 30°, 60°, 90°, 120° and 150° with respect to the incident beam direction. Experimental molecular cross-sections were normalized to theoretical molecular one-center cross-sections revealing oscillatory structures suggestive of secondary interferences as evidenced by the independence on the observation angle. An oscillation interval for 30 MeV O5,8+ + O2 of Δk ∼ 4 a.u. is found, a value two times larger than that previously observed for 3 MeV H+ + N2. No obvious evidence for primary Young-type interferences was seen.  相似文献   

14.
Leaching experiments were performed on UO2 pellets doped with alpha-emitters (238/239Pu) and on spent fuel, in the presence of an external gamma irradiation source (A60Co = 260 Ci,  Gy h−1). The effects of α, β, γ radiation, the fuel chemistry and the nature of the cover gas (aerated or Ar + 4%H2) on water radiolysis and on oxidizing dissolution of the UO2 matrix are quantified and discussed. For the doped UO2 pellets, the nature of the cover gas clearly has a major role in the effect of gamma radiolysis. The uranium dissolution rate in an aerated medium is 83 mg m−2 d−1 compared with only 6 mg m−2 d−1 in Ar + 4%H2. The rate drop is accompanied by a reduction of about four orders of magnitude in the hydrogen peroxide concentrations in the homogeneous solution. The uranium dissolution rates also underestimate the matrix alteration rate because of major precipitation phenomena at the UO2 pellet surface. The presence of studtite in particular was demonstrated in aerated media; this is consistent with the measured H2O2 concentrations (1.2 × 10−4 mol L−1). For spent fuel, the presence of fission products (Cs and Sr), matrix alteration tracers, allowed us to determine the alteration rates under external gamma irradiation. The fission product release rates were higher by a factor of 5-10 than those of the actinides (80-90% of the actinides precipitated on the surface of the fragments) and also depended to a large extent on the nature of the cover gas. No significant effect of the fuel chemistry compared with UO2 was observed on uranium dissolution and H2O2 production in the presence of the 60Co source in aerated conditions. Conversely, in Ar + 4%H2 the fuel self-irradiation field cannot be disregarded since the H2O2 concentrations drop by only three orders of magnitude compared with UO2.  相似文献   

15.
The effects of alpha dose-rate on UO2 dissolution were investigated by performing dissolution experiments with 238Pu-doped UO2 materials containing nominal alpha-activity levels of ∼1-100 Ci/kg UO2 (actual levels 0.4-80 Ci/kg UO2), in 0.1 M NaClO4 and in 0.1 M NaClO4 + 0.1 M carbonate. Dissolution rates increased less than 10-fold for an almost 100-fold increase in doping level and fall within the range of predictions of the Mixed Potential Model (a detailed mechanistic model for used fuel dissolution). Dissolution rates were lower in carbonate-free solutions and enrichment of 238Pu on the UO2 surface was suggested in carbonate solutions. Effective G values, defined as the ratio of the total amount of U dissolved divided by the maximum possible amount of U dissolved by radiolytically produced H2O2, increased with decreasing doping levels. This suggests that the dissolution reaction at high dose rates is limited by the reaction rate between UO2 and H2O2, but becomes increasingly limited by the rate of production of H2O2 at lower dose rates.  相似文献   

16.
In order to elucidate the effect of noble metal clusters in spent nuclear fuel on the kinetics of radiation induced spent fuel dissolution we have used Pd particle doped UO2 pellets. The catalytic effect of Pd particles on the kinetics of radiation induced dissolution of UO2 during γ-irradiation in containing solutions purged with N2 and H2 was studied in this work. Four pellets with Pd concentrations of 0%, 0.1%, 1% and 3% were produced to mimic spent nuclear fuel. The pellets were placed in 10 mM aqueous solutions and γ-irradiated, and the dissolution of was measured spectrophotometrically as a function of time. Under N2 atmosphere, 3% Pd prevent the dissolution of uranium by reduction with the radiolytically produced H2, while the other pellets show a rate of dissolution of around 1.6 × 10−9 mol m−2 s−1. Under H2 atmosphere already 0.1% Pd effectively prevents the dissolution of uranium, while the rate of dissolution for the pellet without Pd is 1.4 × 10−9 mol m−2 s−1. It is also shown in experiments without radiation in aqueous solutions containing H2O2 and O2 that ?-particles catalyze the oxidation of the UO2 matrix by these molecular oxidants, and that the kinetics of the catalyzed reactions is close to diffusion controlled.  相似文献   

17.
The influence of high burn-up structured material on UO2 corrosion has been studied in an autoclave experiment. The experiment was conducted on spent fuel fragments with an average burn-up of 67 GWd/tHM. They were corroded in a simplified groundwater containing 33 mM dissolved H2 for 502 days. All redox sensitive elements were reduced. The reduction continued until a steady-state concentration was reached in the leachate for U at 1.5 × 10−10 M and for Pu at 7 × 10−11 M. The instant release of Cs during the first 7 days was determined to 3.4% of the total inventory. However, the Cs release stopped after release of 3.5%. It was shown that the high burn-up structure did not enhance fuel corrosion.  相似文献   

18.
Diffuse reflectance measurements were made over the wavenumber range of 4000-20,000 cm−1 at room temperature on monoclinic and stabilised ZrO2, together with Y2Ti2O7 having the pyrochlore structure, all of which were doped with U and sintered in various atmospheres. X-ray photoelectron spectroscopy measurements were also carried out on selected samples. In monoclinic and stabilised zirconia, U exhibited valence states of +4 and/or +5, depending on the sintering atmosphere and the presence of appropriate charge compensators. Using both diffuse reflectance and X-ray photoelectron spectroscopy, U was also observed as mainly U4+ and/or U5+ in U-doped Y2Ti2O7 sintered at 1400 °C in air or Ar, although a small amount of U6+ also appeared to be present in some U-doped Y2Ti2O7 samples heated in air.  相似文献   

19.
In this work, we have studied the impact of Y2O3 on the kinetics of oxidative dissolution of UO2 and the consumption of H2O2. The second order kinetics of catalytic consumption of H2O2 on Y2O3 was investigated in aqueous Y2O3 powder suspensions by varying the solid surface area to solution volume ratio. The resulting second order rate constant is 10−8 m s−1, which is of the same magnitude as for the reaction between H2O2 and UO2. Powder experiments with mixtures of UO2 and Y2O3 show that Y2O3 has no effect on the oxidative dissolution of UO2, whereas the consumption of H2O2 seems to be slightly slower in the presence of Y2O3 and H2 respectively. UO2 pellets with solid inclusions of Y2O3 show a decrease in oxidative dissolution by a factor of 3.3 and 5.3 under inert and hydrogen atmosphere, respectively. The rate of H2O2 consumption is similar for all cases and is well in line with kinetic data from powder experiments. The effects of H2 and Y2O3 on the oxidative dissolution of UO2 under gamma irradiation are similar to those found in experiments with H2O2. No significant difference in dissolution between inert and reducing atmosphere can be observed for pure UO2.  相似文献   

20.
Silicon nitride layers of 140 nm thickness were deposited on silicon wafers by low pressure chemical vapour deposition (LPCVD) and irradiated at GANIL with Pb ions of 110 MeV up to a maximum fluence of 4 × 1013 cm−2. As shown in a previous work these irradiation conditions, characterized by a predominant electronic slowing-down (Se = 19.3 keV nm−1), lead to damage creation and formation of etchable tracks in Si3N4. In the present study we investigated other radiation-induced effects like out of plane swelling and refractive index decrease. From profilometry, step heights as large as 50 nm were measured for samples irradiated at the highest fluences (>1013 cm−2). From optical spectroscopy, the minimum reflectivity of the target is shifted towards the high wavelengths at increasing fluences. These results evidence a concomitant decrease of density and refractive index in irradiated Si3N4. Additional measurements, performed by ellipsometry, are in full agreement with this interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号