首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 248 毫秒
1.
研究了低浓度瓦斯气体在泡沫陶瓷内的预混燃烧,以及一段和两段多孔介质燃烧器内,泡沫陶瓷结构参数对燃烧和传热的影响.通过实验结果发现,20PPI多孔介质材料具有最佳的回热效果,因此设计燃烧器时需要根据消光系数和比表面积两个综合因素来确定回热效果.实验中发现在泡沫陶瓷出口段,加一段绝热段,有利于形成稳定高速的表面燃烧.  相似文献   

2.
在热循环型微燃烧器中充入甲烷/空气预混合气体进行燃烧数值模拟,探究该类型燃烧器在加入多孔介质条件下,对燃烧效率和预混气体预热效应的影响。文中采用数值模拟并使用甲烷/空气二阶反应,对比燃烧器在没有加入泡沫陶瓷多孔介质的条件下,在某次反应过程中对微燃烧器的影响,同时还发现多孔介质可以明显地使燃烧器提高燃烧效率,减小热损失,减少污染尾气,而且能更好地回收反应产生的热量并预热未反应气体。  相似文献   

3.
通过建立二维数值模型研究了多孔介质燃烧-换热器内的燃烧和传热。研究系统配置对燃烧-换热器热效率和压力降的影响。结果表明,换热管的纵向距离对燃烧器内温度分布、传热速率和压力损失有显著的影响。减小换热管纵向距离,热效率和压力损失增大,而换热管的水平距离对热效率和压力损失的影响很小。另外,增大小球直径导致热效率增大和压力损失的急剧减小。数值模型的有效性通过实验进行验证。  相似文献   

4.
微型热光电系统多孔介质燃烧器性能的实验研究   总被引:1,自引:0,他引:1  
为保证微型热光电动力系统能稳定、高效地工作,燃烧器壁面需有较高的温度,且分布均匀.对采用多孔介质结构的微型燃烧器进行了实验研究,分析了孔隙率、CH_4/O_2混合比等因素对燃烧器性能的影响.结果表明,采用多孔介质结构可以改善燃烧器内的燃烧传热过程;合理选择孔隙率和工况参数,可以优化燃烧器壁面温度分布,提高系统工作性能.  相似文献   

5.
多孔介质发动机是一种新概念内燃机,它能实现均质和稳定燃烧.用改进的KIVA-3V对一种特定结构的多孔介质发动机的工作过程进行了模拟,并讨论了多孔介质初始温度、多孔介质结构特点对其燃烧与工作特性的影响.计算结果表明,在压缩比一定时,多孔介质初始温度是多孔介质发动机能否压燃着火的决定性因素;不同结构的泡沫陶瓷直接影响多孔介质内气固两相的换热,影响燃烧后期缸内温度和多孔介质固相的平均温度.  相似文献   

6.
对微尺度下的氢气/空气预混气在多孔介质中进行预热燃烧时的燃烧特性进行了试验研究,在回热燃烧器中对不同ppi(每英寸长度上的孔洞数)的多孔介质进行对比试验,分别测试了氢气/空气预混气在预热下的燃烧效率与氢气流量、过量空气系数α以及多孔介质ppi之间的关系.结果表明,在多孔陶瓷的蓄热和混流作用下,燃烧速度和燃烧效率均得到了显著的提高,稳定燃烧界限也有一定的扩大.为进一步减小微尺度条件下的燃烧热量损失,提高燃烧效率,提供了试验依据.  相似文献   

7.
曹海亮  张凯  张硕果  赵纪娜 《热能动力工程》2012,27(2):207-211,265,266
设计了多孔介质回热徽燃烧器,对微燃烧器内H2/Ak的预混燃烧特性进行了实验研究和数值模拟,实验结果表明,当过量空气系数1.0<α<3.0时,微燃烧器具有较高的燃烧效率,出口烟气温度和较低的燃烧热损失率,且燃烧热功率P越高,α越大,热损失率越小.当P=100 W时,其出口烟气温度最高可达到1 232 K,当α=3.0时,燃烧效率仍达到96.85%,而热损失率仅为14.87%.数值模拟结果表明,由于采用了回热夹层和多孔介质回热结构,有效地回收了热量损失,使得微燃烧器具有良好的热性能.证明设计的多孔介质回热微燃烧器是一种燃烧效率高、热损失率低的微燃烧器.  相似文献   

8.
多孔泡沫陶瓷中预混火焰燃烧速率的试验研究   总被引:10,自引:3,他引:10  
本文对在多孔泡沫陶瓷中的甲烷/空气预混燃烧的燃速特性进行了实验研究,用一专用燃烧器对两种材质不同孔径尺寸的多孔介质分别测定了它们的预混燃烧速率。所得结果表明,其燃速与层流无多孔介质的自由火焰相比有显著的提高,并且受到材质和孔径大小的影响。同时,当量皆可燃稳定上下界限也有相应扩大。  相似文献   

9.
多孔介质中预混火焰猝熄及自稳定性研究   总被引:3,自引:0,他引:3  
分析了多孔介质中预混火焰的猝熄效应,试验测定了一系列工况下泡沫陶瓷的猝熄直径和自稳定范围,为多孔介质燃烧器的开发设计提供了依据。通过分析发现,猝熄直径受到多个参数的影响,包括:混合气体的流速u、预混气体的层流火焰传播速度SL、燃烧室空管Re、预混气体的导温系数a、当量比φ以及多孔介质固体温度Ts。通过对多孔介质中燃烧的自稳定性试验研究,发现了多孔介质燃烧器中火焰稳定极限(吹脱极限和回火极限)与多孔介质平均孔径和气流速度及燃烧当量比的关系。  相似文献   

10.
为研究预混气体在多孔介质燃烧器中的火焰燃烧特性,设计了一种新型多孔介质燃烧器,其中多孔介质区域由氧化铝圆柱体有序堆积而成.分别研究了当量比和入口速度对甲烷/空气预混气体在多孔介质燃烧器中的火焰温度分布、火焰最高温度以及火焰传播速度的影响.结果 表明:在当量比0.162~0.324、入口速度0.287~0.860 m/s...  相似文献   

11.
考查了两段式多孔介质内预混气燃烧的温度与压力分布情况。建立了甲烷/空气预混气体在多孔介质内燃烧的二维数学模型,运用FLUENT软件求解瞬态控制方程的方法计算出燃烧稳定后多孔介质内的温度、与压力分布,并考查了不同当量比、多孔介质辐射衰减系数和导热系数对温度和压力分布的影响。结果表明,甲烷/空气预混气体在多孔介质中燃烧,当量比越大温度峰值越高,压力梯度越大;小孔介质辐射衰减系数的改变对温度分布和压力分布没有明显的影响,而大孔介质辐射衰减系数对温度分布和压力分布有较大的影响;增加多孔介质的导热系数,会使固相与气相温度均有所升高,燃烧区域压力降低。  相似文献   

12.
This work presents one-dimensional numerical results for combustion of an air/methane mixture in inert porous media using laminar and radiation models. Comparisons with experimental data are reported. The burner is composed by a preheating section followed by a combustion region. Macroscopic equations for mass, momentum and energy are obtained based on the volume average concept. Distinct energy equations are considered for the porous burner and the flowing gas. The numerical technique employed for discretizing the governing equations was the control volume method with a boundary-fitted non-orthogonal coordinate system. The SIMPLE algorithm was used to relax the entire equation set. Inlet velocity, excess air, porosity and solid-to-fluid thermal conductivity ratio were varied in order to investigate their effect on temperature profiles. Results indicate that higher inlet velocities result in higher gas temperatures, following a similar trend observed in the experimental data used for comparisons. Burning of mixtures close to the stoichiometric conditions also increased temperatures, as expected. Increasing the thermal conductivity of the preheating section reduced peak temperature in the combustion region. The use of porous material with very high thermal conductivity on the combustion region did not affect significantly temperature levels in the combustion section.  相似文献   

13.
This paper examines rich combustion of methanol, methane, octane and automotive-grade petrol inside inert porous media in an effort to examine the suitability of the concept for hydrogen production. Species concentrations were measured and operating limits were tested of steady rich flames stabilized inside a two-layer alumina foam burner and a two-layer alumina bead burner. Using a conversion efficiency based on lower heating values, up to 56% of the methanol was converted to syngas (H2, CO) inside the alumina foam burner and 66% inside the alumina bead burner. Using the same efficiency definition, 45% percent of the methane and 36% of the octane and petrol was converted to syngas with a significant portion of the energy remaining trapped in CH4, C2H2 and C2H4. For methanol, the highest equivalence ratio observed for stable combustion was 6.1 inside the foam burner and 9.3 inside the bead burner which are higher than the conventional upper flammability limit (UFL) of 4.1. Methane's UFL was increased to 1.9 and, at a minimum, the conventional upper flammability limits of iso-octane and petrol were attained. A wide operating envelope was observed, which allowed for large turndown ratios up to 20:1. The composition of the products of the methanol flames examined here were close to equilibrium for relatively low equivalence ratios, while those of hydrocarbon flames differed significantly from equilibrium for all φ suggesting that finite rate kinetics are important. The high conversion efficiencies, quick startup times, compact size, and the absence of a catalyst make the present burner suitable for consideration as part of a reformer in a fuel cell powered automobile.  相似文献   

14.
Increasing the efficiency of radiant burners by using polymer membranes   总被引:1,自引:0,他引:1  
Gas-fired radiant burners are used to convert fuel chemical energy into radiation energy for various applications. The radiation output of a radiant burner largely depends on the temperature of the combustion flame. In fact, the radiation output and, thus, the radiant efficiency increase to a great extent with flame temperature. Oxygen-enriched combustion can increase the flame temperature without increasing fuel cost. However, it has not been widely applied because of the high cost of oxygen production. In the present work, oxygen-enriched combustion of natural gas in porous radiant burners was studied. The oxygen-enriched air was produced passively, using polymer membranes. The membranes were shown to be an effective means of obtaining an oxygen-enriched environment for gas combustion in the radiant burners. Two different porous radiant burners were used in this study. One is a reticulated ceramic burner and the other is a ceramic fibre burner. The experimental results showed that the radiation output and the radiant efficiency of these burners increased markedly with rising oxygen concentrations in the combustion air. Also investigated were the effects of oxygen enrichment on combustion mode, and flame stability on the porous media.  相似文献   

15.
The combustion characteristics of liquefied petroleum gas inside porous heating burners have been investigated experimentally under steady-state and transient conditions. Cooling tubes were embedded in the postflame region of the packed bed of a porous heating burner. The flame speed, temperature profile, and [NOx] and [CO] in the product gases were monitored during an experiment. Due to the heat removal by the cooling tubes, a phenomenon termed metastable combustion was observed; this is that only one flame speed exists at a particular equivalence ratio for maintaining stable combustion within the porous bed of the porous heating burner. This behavior is quite different from that of porous burners without cooling tubes, in which an extended range of flame speeds usually is found for maintaining stable combustion. After metastable combustion has been established in a porous heating burner, a change in the equivalence ratio will stop the metastable combustion and drive the flame out of the packed bed. From the steady-state results, the porous heating burner was shown to maintain stable combustion under fuel-lean conditions with an equivalence ratio lower than the flammability limit of a normal free-burning system. The flame speed in a porous heating burner was found to decrease with an increase in the length of the porous bed. Combustion within a porous heating burner has the features of low flame temperature, extended reaction zone, high preheating temperature and low emissions of NOx and CO. The flame temperature ranged from 1050 to 1250 °C, which is ∼200 °C lower than the adiabatic flame temperature at the corresponding equivalence ratio. The length of the reaction zone could be more than 70 mm and the preheating temperature ranged from 950 to 1000 °C. Both [NOx] and [CO] were low, typically below 10 ppm.  相似文献   

16.
Coal mine methane (CMM) combustion in the porous media burner (PMB) of boiler system contributes to the simultaneous production of hydrogen and heat, and the hydrogen can be used as the main raw materials for solid oxide fuel cell (SOFC). In this study, the double-layer burners were built by filling the downstream with the hollow cylinders of different sizes and pore numbers due to the high porosity of hollow-structure units compared with the common packed bed of pellets. The distributions of temperature, species concentration and reforming efficiency were obtained on the consideration of operating condition and preheating temperature. Results shows that the reforming efficiency of the 10-6-10 mm cylinder burner was optimal in all one-pore cylinder burners with the highest concentration of 12.3% (H2) and 8.8% (CO). As for the packed bed of 8 mm cylinders, the four-pore cylinder burner showed the highest peak temperature and maximum yields of hydrogen. With the increasing of preheating temperature, the stabilization time of the flame propagating decreased. Moreover, the peak temperature and reforming efficiency increased with the increasing of the inlet velocity and the largest efficiency of 54.2% appeared at the velocity of 18 cm/s in the 10 mm cylinder burner.  相似文献   

17.
Porous burners offer attractive features such as competitive combustion efficiency, high power ranges, and lower pollutant emissions. In the present study, the thermal characteristics of a porous burner are numerically investigated for a range of operating conditions and design specifications within a practical range. The premixed flame propagation of a methane/air mixture in a ceramic porous medium is simulated through an unsteady, one-dimensional model. The combustion process is modeled using a suitable single-step chemical kinetics. The reaction location is not predetermined, thus the flame is allowed to float within the solid matrix or to run off from either side of the porous medium. The numerical results indicate that flame stability and thermal characteristics of the burner are strongly dependent on the inlet mixture specifications and the solid matrix structural properties. For a fixed value of the inlet firing rate, the combustion products temperature will increase by an increase in the inlet gas temperature, an increase in the matrix porosity, or by a decrease of the matrix pore density. Among the geometrical properties, the burner length has virtually no effect on the burner performance. An increase in the solid matrix porosity or burner firing rate will increase the efficiency of the preheating zone, while increasing the inlet gas temperature or matrix pore density will cause a reduction in this efficiency. Simulation results also suggest that in order to prevent flame blow-out or flash-back, critical values of the burner settings and design parameters must be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号