首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Due to low load factors of wind power generation,it is possible to reduce transmission capacity to minimize the cost of transmission system construction.Two VSC-HVDC schemes for offshore wind farm,called the point to point(PTP) and DC mesh connections are compared in terms of the utilization of transmission system and its cost.A Weibull distribution is used for estimating offshore wind power generation,besides,the cross correlation between wind farms is considered.The wind energy curtailment is analyzed using the capacity output possibility table(COPT).The system power losses,costs of transmission investment and wind energy curtailment are also computed.A statistic model for the wind generation and transmission is built and simulated in MATLAB to validate the study.It is concluded that a DC mesh transmission can reduce the energy curtailment and power losses.Further benefit is achievable as the wind cross correlation between wind farms decreases.  相似文献   

2.
Electric and magnetic fields generated by lightning cause a serious hazard to various systems.Now wind turbine installations with higher power capacity are increasing.Higher power capacity requires higher height and so there is more probability of lightning strike.Blades are the most probable components to be struck by lightning.The most common lightning protection system for the blades consists of several metallic receptors on the blade surface.Those are connected to the ground by metallic down-conductors placed inside the blade shell.This paper studies effects of the receptor configurations on protecting the blade against lightning strike.For this purpose,an analysis procedure based on finite element method(FEM)in COMSOL Multiphysics software environment is used.The voltage distribution around the blade is simulated for various configurations of receptors.The best configuration is presented.Simulations are performed on the blade model of a special wind turbine,which isVESTAS V47".  相似文献   

3.
Large-scale doubly-fed induction generator(DFIG)wind turbines are connected to the grid and required to remain grid-connection during faults,the short-circuit current contributed by the generation has become a significant issue.However,the traditional calculation methods aiming at synchronous generators cannot be directly applied to the DFIG wind turbines.A new method is needed to calculate the short-circuit current required by the planning,protection and control of the power grid.The short-circuit transition of DFIG under symmetrical and asymmetric short-circuit conditions are mathematically deduced,and the short-circuit characteristics of DFIG are analyzed.A new method is proposed to calculate the steady-state short-circuit current of DFIG based on the derived expressions.The time-domain simulations are conducted to verify the accuracy of the proposed method.  相似文献   

4.
To study the effects of wind generators on distribution system protection,the short-circuit current(SCC) characteristics of wind generators is important.Although there are many researches on the issue,a clear agreement has not been reached so far.The SCC characteristics for different wind generators are studied.PSCAD simulation is performed in the same system integrated with different kinds of wind generators,and their results are compared with those reported in IEEE papers.The detection possibility by overcurrent relay(OCR)is discussed based on the simulation results.  相似文献   

5.
The uncertainties associated with multi-area power systems comprising both thermal and distributed renewable generation (DRG) sources such as solar and wind necessitate the use of an efcient load frequency control (LFC) technique. Therefore, a hybrid version of two metaheuristic algorithms (arithmetic optimization and African vulture’s optimization algorithm) is developed. It is called the ‘arithmetic optimized African vulture’s optimization algorithm (AOAVOA)’. This algorithm is used to tune a novel type-2 fuzzy-based proportional–derivative branched with dual degree-of-freedom proportional–integral–derivative controller for the LFC of a three-area hybrid deregulated power system. Thermal, electric vehicle (EV), and DRG sources (including a solar panel and a wind turbine system) are connected in area-1. Area-2 involves thermal and gas-generating units (GUs), while thermal and geothermal units are linked in area-3. Practical restrictions such as thermo-boiler dynamics, thermal-governor dead-band, and generation rate constraints are also considered. The proposed LFC method is compared to other controllers and optimizers to demonstrate its superiority in rejecting step and random load disturbances. By functioning as energy storage elements, EVs and DRG units can enhance dynamic responses during peak demand. As a result, the efect of the aforementioned units on dynamic reactions is also investigated. To validate its efectiveness, the closed-loop system is subjected to robust stability analysis and is compared to various existing control schemes from the literature. It is determined that the suggested AOAVOA improves ftness by 40.20% over the arithmetic optimizer (AO), while frequency regulation is improved by 4.55% over an AO-tuned type-2 fuzzy-based branched controller.  相似文献   

6.
More and more large capacity wind power will be integrated into power system in the future,and certain technical challenges will emerge due to the fluctuation characteristics of wind power and the complex control of power electronic devices inside the wind turbines(e.g.,low voltage ride through(LVRT)).By comparing a wind power integration grid with a hydropower integration grid,the special transient phenomena caused by the wind power integration is studied and simulation results are presented.Furthermore,the potential impacts on the traditional protection are discussed.Results show that the special transient phenomena can decrease the sensitivity,reliability and operation speed of conventional protections.  相似文献   

7.
Future power system faces several challenges,one of them is the high penetration level of intermittent wind power generation,providing small or even no inertial response and being not contributing to the frequency stability.The effect of shaft stiffness on inertial response of fixed speed wind turbines is presented.Four different drive-train models based on the multi-body system are developed.The small-signal analysis demonstrates no significant differences between models in terms of electro-mechanical eigen-values for increasing shaft stiffness.The natural resonance frequency of drive-train torsion modes shows slightly different values between damped and undamped models,but no significant differences are found in the number-mass models.Time-domain simulations show the changes in the active power contribution of a wind farm based on a fixed speed wind turbine during the system frequency disturbance.The changes in the kinetic energy during the dynamic process are calculated and their contribution to the inertia constant is small and effective.The largest contribution of the kinetic energy is provided at the beginning of the system frequency disturbance to reduce the rate of the frequency change,it is positive for the frequency stability.  相似文献   

8.
Because of the large-scale integration of wind power,the dynamic characteristics of power system have many uncertain effects.Based on deterministic analysis methods,traditional on-line security assessment system cannot quantitatively estimate the actual operating conditions of the power system for only considering the most serious and credible accidents.Therefore,the risk theory is introduced into an on-line security assessment system and then an on-line risk assessment system for wind power is designed and implemented by combining with the dynamic security assessment system.Based on multiple data integration,the wind power disturbance probability is available and the security assessment of the power grid can obtain security indices in different aspects.The operating risk index is an expectation of severity,computed by summing up all the products of the result probability and its severity.Analysis results are reported to the dispatchers in on-line environment,while the comprehensive weak links are automatically provided to the power dispatching center.The risk assessment system in operation can verify the reasonableness of the system.  相似文献   

9.
Recent events related to power system failure have shown that voltage collapse can be a cause of widespread outages.The thrust of this paper is to discuss and establish means of mitigating system voltage instability by using a combination of both reactive current droop compensation and line drop compensation.It is shown that the point that the voltage regulator controls can be defined by a new method which is based on a widely accepted voltage stability analysis tool.This tool can be used to determine which generators will have an impact on the maximum permissible loading of a bus.Dynamic analysis was carried out on the CIGRE Nordic test system to study the impact of control point location on time to collapse and it is shown that the new scheme can improve the voltage stability.  相似文献   

10.
《电气》2011,(3):27-29
Since wind power has the features of being intermittent and unpredictable, and usually needs transmission over long distances, grid integration of large-scale wind power will exert signif icant influence on power grid planning and construction, and will make a heavy impact on the safe and reliable operation of power systems. To deal with the diff iculties of large scale wind power dispatch, this paper presents a new automatic generation control (AGC) scheme that involves the participation of wind farms. The scheme is based on ultra-short-term wind power forecast. The author establishes a generation output distribution optimization mode for the power system with wind farms and verif ies the feasibility of the scheme by an example.  相似文献   

11.
杨茂  杜刚 《中国电力》2017,50(1):140-145
风电功率特有的随机波动性,导致风电功率点预测方法的预测精度不高,增加了风电并网的难度,致使风电场弃风现象严重。基于风电功率点预测的基础上,风电功率概率预测可以预测出风电功率的波动范围,为电力系统的安全运行以及电网调度运行给出不确定信息和可靠性评估依据。提出了一种基于t location- scale分布的风电功率概率预测方法,即采用t location-scale函数来描述风电功率预测误差概率分布,并以此建立误差分布,基于已建立的误差分布可以进行概率预测。并引进了覆盖率和平均带宽来评价预测区间的优劣程度。利用吉林省西部某风电场历史数据验证了该方法的可靠性。  相似文献   

12.
世界风力发电的现状及远景   总被引:5,自引:0,他引:5  
许振华 《发电设备》2001,(6):47-51,53
该文阐述了近年来世界各国风力发电的情况,并指出风力发电大有发展前途,将成为沿海各国发展电力的新措施。  相似文献   

13.
关于风压不均匀系数的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过比较、分析我国与俄罗斯、日本、德国的输电线路设计规程对于风压不均匀系数取值的规定及差异, 提出我国输电线路设计规程的风压不均匀系数取值的修正方案。同时对在输电线路工程设计中执行该修正方案的可操作性以及对线路杆塔指标的影响进行了研究和评估。在以后新设计的输电线路工程中, 对于杆塔规划、塔头尺寸的确定和杆塔定位后导线与绝缘子串的风偏校核等各环节,可按照该修正方案开展工作。  相似文献   

14.
周沈杰 《华东电力》2007,35(10):96-98
提出风电场风机布置的原则.认为不同地理环境条件、风资源条件、地区经济状况都会对风机的布置方案产生影响.对内陆风电场和沿岸滩涂风电场设计中风机布置技术和经济进行了分析比较,并对内陆风场的风机布置提出了一种新的行列距组合选择原则.  相似文献   

15.
根据山东某风电场实测资料,对风电场逐月、逐时、不同风速下的风切变指数进行研究并探究风切变指数不同取值对风电场轮毂高度处风资源的影响。在分析轮毂高度风资源时,建议采用高差较小的高度处风速根据综合风切变指数进行推导。  相似文献   

16.
通过分析我国内陆河北省张北县和吉林地区风电场内的风速廓线变化特性发现,各高度间风速的差异分布大体相同:各高度间风速差异由夜间到白天逐渐缩小,在中午达到最小,由白天到夜间逐渐增大,并且在各个阶段又相对稳定,即在日出后由地面向上的热量输送逐渐增强,湍流加强,各层间的风速差异减少,并迅速趋于稳定,直至日落湍流减弱。各层间的风速差异迅速增大,并趋于稳定。这一规律的发现对解释涡轮高度不同时间、相同风速条件下风机出力不同及风电功率建模有重要意义。  相似文献   

17.
本文对规范中角度风作用下风荷载的计算公式和数值进行了推导和验证,补充了直线塔在角度风作用下风荷载的数值,并得到了转角塔在角度风作用下线条风荷载的计算公式和表格,方便了工程应用。文章还提出了自己在输电线路设计中的一些观点。  相似文献   

18.
风力机的MATLAB模型及其应用   总被引:5,自引:0,他引:5  
提出了一种简化的定桨距风力机的MATLAB模型。该模型对于风电场的建设与规划 ,对于风力发电机组的运行仿真和设计都具有重要的意义  相似文献   

19.
风力机模拟技术综述   总被引:5,自引:0,他引:5  
随着风力发电技术研究的日益深入,风力机模拟技术也在近十年得到了快速发展。风力机模拟器可以用来取代实际的风力机,为在实验室内进行风力发电技术的研究提供了有效途径。在研究风力机特性的基础上,详细介绍了目前国内、外风力机模拟的具体方案,并对各模拟方案进行了对比、分析与总结。  相似文献   

20.
我国海上风电发展的若干问题初探   总被引:4,自引:0,他引:4  
刘琦  许移庆 《上海电力》2007,20(2):144-148
国外的近海风电场建设已进入大规模发展阶段,我国的海上风电场建设也已启动。介绍了国内外海上风电发展的概况,对海上风电技术和海上风电场投资进行了分析,探讨了我国发展海上风电所面临的一些问题以及应采取的相应对策。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号