首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that an ionic liquid consisting of imidazolium salt with a BF4 counter ion (BMIM-BF4) can directly be used to grow well-defined layers of self-organized TiO2 nanotubes. For this a Ti metal substrate is anodized in this electrolyte for potential range between 3 VAg/AgCl and 10 VAg/AgCl without addition of free fluoride species (fluorides are used in all previous tube growth procedures). Key factors that influence the morphology and geometry of the resulting nanotubular layer are the anodic potential, the anodization time and particularly the water content in the ionic liquid. The resulting nanotubes layers have thickness in the range of approximately 300-650 nm; with individual tubes that have diameters between 27 nm and 43 nm.  相似文献   

2.
Transition metal (TM)-doped TiO2 films (TM = Co, Ni, and Fe) were deposited on Si(100) substrates by a sol–gel method. With the same dopant content, Co dopants catalyze the anatase-to-rutile transformation (ART) more obviously than Ni and Fe doping. This is attributed to the different strain energy induced by the different dopants. The optical properties of TM-doped TiO2 films were studied with spectroscopic ellipsometry data. With increasing dopant content, the optical band gap (EOBG) shifts to lower energy. With the same dopant content, the EOBG of Co-doped TiO2 film is the smallest and that of Fe-doped TiO2 film is the largest. The results are related to electric disorder due to the ART. Ferromagnetic behaviors were clearly observed for TM-doped TiO2 films except the undoped TiO2 film which is weakly magnetic. Additionally, it is found that the magnetizations of the TM-doped TiO2 films decrease with increasing dopant content.  相似文献   

3.
Titanium oxide thin films were deposited on p-type Si(100), SiO2/Si, and Pt/Si substrates by plasma enhanced chemical vapor deposition using high purity Ti(O-i-C3H7)4 and oxygen. As-deposited amorphous TiO2 thin films were treated by rapid thermal annealing (RTA) in oxygen ambient, and the effects of RTA conditions on the structural and electrical properties of TiO2 films were studied in terms of crystallinity, microstructure, current leakage, and dielectric constant. The dominant crystalline structures after 600 and 800 ‡C annealing were an anatase phase for the TiO2 film on SiO2/Si and a rutile phase for the film on a Pt/Si substrate. The dielectric constant of the as-grown and annealed TiO2 thin films increased depending on the substrate in the order of Si, SiO2/Si, and Pt/ Si. The SiO2 thin layer was effective in preventing the formation of titanium silicide at the interface and current leakage of the film. TEM photographs showed an additional growth of SiOx from oxygen supplied from both SiO2 and TiO2 films when the films were annealed at 1000 ‡C in an oxygen ambient. Intensity analysis of Raman peaks also indicated that optimizing the oxygen concentration and the annealing time is critical for growing a TiO2 film having high dielectric and low current leakage characteristics.  相似文献   

4.
Doping of titania nanotubes is one of the efficient way to obtain improved physical and chemical properties. Through electrochemical anodization and annealing treatment, Ni-doped TiO2 nanotube arrays were fabricated and their hydrogen sensing performance was investigated. The nanotube sensor demonstrated a good sensitivity for wide-range detection of both dilute and high-concentration hydrogen atmospheres ranging from 50 ppm to 2% H2. A temperature-dependent sensing from 25°C to 200°C was also found. Based on the experimental measurements and first-principles calculations, the electronic structure and hydrogen sensing properties of the Ni-doped TiO2 with an anatase structure were also investigated. It reveals that Ni substitution of the Ti sites could induce significant inversion of the conductivity type and effective reduction of the bandgap of anatase oxide. The calculations also reveal that the resistance change for Ni-doped anatase TiO2 with/without hydrogen absorption was closely related to the bandgap especially the Ni-induced impurity level.  相似文献   

5.
In this study, we used the electrochemical anodization to prepare TiO2 nanotube arrays and applied them on the photoelectrode of dye-sensitized solar cells. In the field emission scanning electron microscopy analysis, the lengths of TiO2 nanotube arrays prepared by electrochemical anodization can be obtained with approximately 10 to 30 μm. After titanium tetrachloride (TiCl4) treatment, the walls of TiO2 nanotubes were coated with TiO2 nanoparticles. XRD patterns showed that the oxygen-annealed TiO2 nanotubes have a better anatase phase. The conversion efficiency with different lengths of TiO2 nanotube photoelectrodes is 3.21%, 4.35%, and 4.34% with 10, 20, and 30 μm, respectively. After TiCl4 treatment, the efficiency of TiO2 nanotube photoelectrode for dye-sensitized solar cell can be improved up to 6.58%. In the analysis of electrochemical impedance spectroscopy, the value of Rk (charge transfer resistance related to recombination of electrons) decreases from 26.1 to 17.4 Ω when TiO2 nanotubes were treated with TiCl4. These results indicate that TiO2 nanotubes treated with TiCl4 can increase the surface area of TiO2 nanotubes, resulting in the increase of dye adsorption and have great help for the increase of the conversion efficiency of DSSCs.  相似文献   

6.
V.C. Anitha 《Electrochimica acta》2010,55(11):3703-9284
The electrochemical behavior of fluorine containing electrolytes and its influence in controlling the lateral dimensions of TiO2 nanotubes is thoroughly investigated. Potentiostatic anodization is carried out in three different electrolytes, viz., aqueous hydrofluoric acid (HF), HF containing dimethyl sulphoxide (DMSO) and HF containing ethylene glycol (EG). The experiments were carried out over a broad voltage range from 2 to 200 V in 0.1-48 wt% HF concentrations and different electrolytic compositions for anodization times ranging from 5 s to 70 h. The chemistry that dictates how the nature of electrolytes influences the morphology of nanotubes is discussed. Electrochemical impedance spectra were recorded for varying compositions of all the electrolytes. It was observed that composition of the electrolyte and its fluorine inhibiting nature has significant impact on nanotube formation as well as in controlling the aspect ratio. The inhibiting nature of EG is helpful in holding fluorine at the titanium anode, thereby allowing controlled etching at appropriate voltages. Thus our study demonstrates that HF containing EG is a promising electrolytic system providing wide tunability in lateral dimensions and aspect ratio of TiO2 nanotubes by systematically varying the anodization voltage and electrolyte composition.  相似文献   

7.
Photoelectrochemical application of nanotubular titania photoanode   总被引:2,自引:0,他引:2  
Yibing Xie 《Electrochimica acta》2006,51(17):3399-3406
Titania/titanium (TiO2/Ti) electrodes with tailored surface structure have been fabricated by galvanostatic-potentiostatic anodization process. Highly ordered titania nanotubes array can be prepared by electrolyzing titanium foil at 20 V for 40 min in HF-H3PO4 electrolyte. Comparatively, micro-structured and crystallized TiO2 multiporous film can be prepared at 20-40 V for 6 h in H2SO4-H3PO4-H2O2-HF electrolyte. The morphological characteristics and crystal behaviors of both nanotubular and micro-structured TiO2 films are investigated by field emission scanning electron microscopy and X-ray diffraction measurement. Photoelectrochemical properties of TiO2/Ti film electrodes are examined by anodic photocurrent response and cyclic voltammetry measurement. Photocatalytic and photoelectrocatalytic application are investigated by using either nanotubular TiO2/Ti thin-film or micro-structured TiO2/Ti thick-film electrodes as photoanodes for recalcitrant organic pollutant degradation.  相似文献   

8.
Inorganic/organic heterojunction solar cells (HSCs) have attracted increasing attention as a cost-effective alternative to conventional solar cells. This work presents an HSC by in situ growth of CuInS2(CIS) layer as the photoabsorption material on nanoporous TiO2 film with the use of poly(3-hexylthiophene) (P3HT) as hole-transport material. The in situ growth of CIS nanocrystals has been realized by solvothermally treating nanoporous TiO2 film in ethanol solution containing InCl3 · 4H2O, CuSO4 · 5H2O, and thioacetamide with a constant concentration ratio of 1:1:2. InCl3 concentration plays a significant role in controlling the surface morphology of CIS layer. When InCl3 concentration is 0.1 M, there is a layer of CIS flower-shaped superstructures on TiO2 film, and CIS superstructures are in fact composed of ultrathin nanoplates as ‘petals’ with plenty of nanopores. In addition, the nanopores of TiO2 film are filled by CIS nanocrystals, as confirmed using scanning electron microscopy image and by energy dispersive spectroscopy line scan analysis. Subsequently, HSC with a structure of FTO/TiO2/CIS/P3HT/PEDOT:PSS/Au has been fabricated, and it yields a power conversion efficiency of 1.4%. Further improvement of the efficiency can be expected by the optimization of the morphology and thickness of CIS layer and the device structure.  相似文献   

9.
ZnO/TiO2 nanolaminates were grown on Si (100) and quartz substrates by atomic layer deposition at 200°C using diethylzinc, titanium isopropoxide, and deionized water as precursors. All prepared multilayers are nominally 50 nm thick with a varying number of alternating TiO2 and ZnO layers. Sample thickness and ellipsometric spectra were measured using a spectroscopic ellipsometer, and the parameters determined by computer simulation matched with the experimental results well. The effect of nanolaminate structure on the optical transmittance is investigated using an ultraviolet–visible-near-infrared spectrometer. The data from X-ray diffraction spectra suggest that layer growth appears to be substrate sensitive and film thickness also has an influence on the crystallization of films. High-resolution transmission electron microscopy images show clear lattice spacing of ZnO in nanolaminates, indicating that ZnO layers are polycrystalline with preferred (002) orientation while TiO2 layers are amorphous.  相似文献   

10.
The nanomechanical properties of BiFeO3 (BFO) thin films are subjected to nanoindentation evaluation. BFO thin films are grown on the Pt/Ti/SiO2/Si substrates by using radio frequency magnetron sputtering with various deposition temperatures. The structure was analyzed by X-ray diffraction, and the results confirmed the presence of BFO phases. Atomic force microscopy revealed that the average film surface roughness increased with increasing of the deposition temperature. A Berkovich nanoindenter operated with the continuous contact stiffness measurement option indicated that the hardness decreases from 10.6 to 6.8 GPa for films deposited at 350°C and 450°C, respectively. In contrast, Young''s modulus for the former is 170.8 GPa as compared to a value of 131.4 GPa for the latter. The relationship between the hardness and film grain size appears to follow closely with the Hall–Petch equation.  相似文献   

11.
This work deals with the deposition of Cr-doped TiO2 thin films on porous silicon (PS) prepared from electrochemical anodization of multicrystalline (mc-Si) Si wafers. The effect of Cr doping on the properties of the TiO2-Cr/PS/Si samples has been investigated by means of X-ray diffraction (XRD), atomic force microcopy (AFM), photoluminescence, lifetime, and laser beam-induced current (LBIC) measurements. The photocatalytic activity is carried out on TiO2-Cr/PS/Si samples. It was found that the TiO2-Cr/PS/mc-Si type structure degrades an organic pollutant (amido black) under ultraviolet (UV) light. A noticeable degradation of the pollutant is obtained for a Cr doping of 2 at. %. This result is discussed in light of LBIC and photoluminescence measurements.  相似文献   

12.
Self-assembled layers of vertically aligned titanium nanotubes were fabricated on a Ti disc by anodization. Pamidronic acids (PDAs) were then immobilized on the nanotube surface to improve osseointegration. Wide-angle X-ray diffraction, X-ray photoelectron microscopy, and scanning electron microscopy were employed to characterize the structure and morphology of the PDA-immobilized TiO2 nanotubes. The in vitro behavior of osteoblast and osteoclast cells cultured on an unmodified and surface-modified Ti disc was examined in terms of cell adhesion, proliferation, and differentiation. Osteoblast adhesion, proliferation, and differentiation were improved substantially by the topography of the TiO2 nanotubes, producing an interlocked cell structure. PDA immobilized on the TiO2 nanotube surface suppressed the viability of the osteoclasts and reduced their bone resorption activity.  相似文献   

13.
We prepared photocatalytic TiO2 thin films which exhibited relatively high growth rate and low impurity on polymer substrate by plasma enhanced atomic layer deposition (PE-ALD) from Ti(NMe2)4 [tetrakis (dimethylamido) Ti, TDMAT] and O2 plasma to show the self-cleaning effect. The TiO2 thin films with anatase phase and bandgap energy about 3.3 eV were deposited at growth temperature of 250 °C and the photocatalytic effects were compared with commercial Activ glass. From contact angles measurement of water droplet and photo-induced degradation test of organic liquid, TiO2 thin films with anatase phases showed superhydrophilic phenomena and decomposed organic liquid after UV irradiation. The anatase TiO2 thin film on polymer substrate showed highest photocatalytic efficiency after 5 h UV irradiation. We attribute the highest photocatalytic efficiency of TiO2 thin film with anatase structure to the formation of suitable crystalline phase and large surface area.  相似文献   

14.
In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV–vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm2, the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm2, and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized.  相似文献   

15.
The growth of porous anodic Al2O3 films, formed potentiostatically in continuously stirred 15 wt.% H2SO4 electrolyte was studied as a function of the anodization voltage (14–18 V), bath temperature (15–25 °C) and anodization time (15–35 min). The variation of the anodic surface overpotential with the current density was measured experimentally. The film thickness at the more accessible portions of the anode was observed to increase with the anodization voltage and the bath temperature. However, the film thickness on the less accessible portions of the anode did not significantly change with the voltage or the bath temperature. This indicates that the anodization process at the more accessible regions is more strongly influenced by the surface processes than by the electric migration within the electrolyte. Furthermore, analysis confirms that the major portion of the film resistivity resides within a thin sub-layer that does not vary with the anodization time, and the growing anodic layer contributes only marginally to the overall film resistance. Computer aided design software was employed to simulate the current density distribution. For the range of process parameters studied, the electrochemical CAD software predicts accurately the measured thickness distribution along the anode.  相似文献   

16.
Self ordered arrays of titanium manganese mixed oxide nanotubes were prepared by anodization of Ti8Mn alloy (UNS R56080) under ultrasonication in diluted ethylene glycol containing fluoride. The dimensions of the nanotubes (diameter: 20-100 nm and length: 0.5-2.0 μm) could be tuned by changing the synthesis parameters. The as-anodized nanotubes showed a stoichiometry of (Ti,Mn)O2. Upon annealing at 500 °C in oxygen atmosphere, the nanotubes contained a mixture of anatase + rutile phases of TiO2 and Mn2O3. The composition of the oxide nanotubes was influenced by the chemistry of the phases present in the alloy. More manganese content was observed in the oxide formed on the β-phase than in the oxide layer of α-phase. Anodization in the ultrasonic field increased the kinetics of nanotubular oxide formation and resulted in homogeneous ordering of the nanotubular arrays as compared to the anodization by conventional stirring in the fluoride containing ethylene glycol solution. Whereas, anodization in aqueous acidified fluoride solutions resulted in severe attack of the β-phase and did not show presence of nanotubular oxide structure.  相似文献   

17.
The preparation of silica-doped high aspect-ratio TiO2 nanotubes and their apatite-forming ability were demonstrated in this study. The high aspect-ratio TiO2 nanotube layers were produced by electrochemical anodic oxidation of Ti in chloride-containing electrolytes. Nanotubes were doped with different concentrations of silica particles through anodization in NaCl electrolyte containing different concentrations of water glass (24 g/L or 48 g/L Na2SiO3). The biomimetic apatite deposition behavior was evaluated under simulated body fluid (SBF) with an ion concentration nearly equal to human blood plasma. The experimental results collectively demonstrate the successful silica doping of the resultant nanotube layers with significant abundant OH groups on their surfaces. The results of hydroxyapatite (HA) growth on nanotubes clearly show that the silica doping greatly enhances the fast nucleation and growth of HA, especially for the tubes in their “as-formed” amorphous state, which usually require a long time for apatite induction. The nanotubes doped with high silica content combined with an anatase or a mixture of anatase and rutile led to the formation of very thick and continuous apatite layers with a thickness of ∼7 μm in 21 days. In contrast, to the tubes doped with a low concentration of silica (grown in an electrolyte containing 24 g/L Na2SiO3), the HA deposited in the form of closely packed spheroid particles and never developed into continuous films. This effect could be attributed to the critical active-site density (silanol groups, >Si-OH), which provides the sterochemical match for apatite growth. Finally, the results of this study provide, for the first time, evidence for the dependence of HA morphology/microstructure on the crystallographic structure and the density of active sites (>Si-OH groups).  相似文献   

18.
The electronic structures, formation energies, and band edge positions of anatase TiO2 doped with transition metals have been analyzed by ab initio band calculations based on the density functional theory with the planewave ultrasoft pseudopotential method. The model structures of transition metal-doped TiO2 were constructed by using the 24-atom 2 × 1 × 1 supercell of anatase TiO2 with one Ti atom replaced by a transition metal atom. The results indicate that most transition metal doping can narrow the band gap of TiO2, lead to the improvement in the photoreactivity of TiO2, and simultaneously maintain strong redox potential. Under O-rich growth condition, the preparation of Co-, Cr-, and Ni-doped TiO2 becomes relatively easy in the experiment due to their negative impurity formation energies, which suggests that these doping systems are easy to obtain and with good stability. The theoretical calculations could provide meaningful guides to develop more active photocatalysts with visible light response.  相似文献   

19.
Carbon films on the Si/SiO2 substrate are fabricated using modified method of close space sublimation at atmospheric pressure. The film properties have been characterized by micro-Raman and X-ray photoelectron spectroscopy and monochromatic ellipsometry methods. Ellipsometrical measurements demonstrated an increase of the silicon oxide film thickness in the course of manufacturing process. The XPS survey spectra of the as-prepared samples indicate that the main elements in the near-surface region are carbon, silicon, and oxygen. The narrow-scan spectra of C1s, Si2p, O1s regions indicate that silicon and oxygen are mainly in the SiO x (x ≈ 2) oxide form, whereas the main component of C1s spectrum at 284.4 eV comes from the sp2-hybridized carbon phase. Micro-Raman spectra confirmed the formation of graphene films with the number of layers that depended on the distance between the graphite source and substrate.  相似文献   

20.
Well‐aligned, high aspect‐ratio and open‐ended TiO2 nanotube arrays secured within a Ti foil (TiO2 nanotubes cartridge) were successfully prepared through the double‐sided anodization method. With ~210 µm of nanotube length, the anodic growth of TiO2 was accelerated and stabilized by the lactic acid‐containing ethylene glycol electrolyte. In the absence of lactic acid, the anodization led to detachment of nanotubes from the Ti foil after 5–6 h of high voltage (80 V) anodization. Transmission electron microscope image and Raman spectrum revealed that the as‐anodized TiO2 nanotube arrays without annealing treatment were partially crystalline anatase and demonstrated photocatalytic activity in the mineralization of formic acid. © 2015 American Institute of Chemical Engineers AIChE J, 62: 415–420, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号