首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以膨胀石墨(100mesh)为原料,采用改进的水热法,经超声剥离制备了氧化石墨烯(GO)。通过X射线衍射、原子力显微镜及傅里叶变换红外光谱对GO结构进行表征,进而采用两相萃取法将制得的GO萃取到环氧树脂(EP)基体中。利用X射线衍射、扫描电镜等对GO/EP复合材料的断面形貌及GO在树脂中的分散状况进行表征,并进行了力学性能测试及动态力学分析。结果表明,GO厚度约为1.4nm,复合材料的力学性能较纯环氧明显提高,GO的加入使环氧树脂冲击断面转变为塑性断裂。当GO加入量为0.25%(质量分数)时,材料的冲击强度最高,强度值为55.17kJ/m2,提高了115%;拉伸强度提高了18%;断裂伸长率增加了78%。经动态力学分析可推断,GO的加入增强了其与环氧树脂间的界面粘接性,同时影响到环氧树脂聚合网络的形成。改性后的环氧树脂韧性大幅度增加。  相似文献   

2.
采用有机化蒙脱土(OMMT)和碳纳米管(MWCNTs)2种纳米材料改性双酚A型环氧树脂。通过溶液共混法制备OMMT/EP、MWCNTs/EP、OMMT/MWCNTs/EP环氧树脂纳米复合材料。利用扫描电子显微镜观察了复合材料的冲击断面,测试了复合材料的力学性能和热性能,探讨了OMMT、MWCNTs增韧环氧树脂的机理。结果表明,当试样中OMMT质量分数为4%,MWCNTs质量分数为0.7%时,OMMT/EP、MWCNTs/EP和OMMT/MWCNTs/EP的冲击强度分别达到16.8kJ/m2,23.1kJ/m2,30.4kJ/m2,较未掺杂环氧树脂分别提高了16.7%,60.4%,110%。弯曲强度较未改性环氧树脂分别提高了27.54%,35.74%,54.12%。3种复合材料的热分解温度和马丁耐热温度均较未改性环氧树脂略有提高。  相似文献   

3.
对多壁碳纳米管(MWCNTs)分别进行共价、非共价和混杂功能化改性, 然后采用溶液共混法, 将三种功能化类型的MWCNTs按不同质量分数分别加入环氧树脂(EP)制备MWCNTs/EP复合材料。通过拉伸试验和热重分析, 研究MWCNTs的功能化类型及含量对复合材料力学性能和热学性能的影响, 并对复合材料拉伸试件断面进行SEM观察分析。结果表明: 与共价功能化复合材料(MWCNTs-Epon828/EP)和非共价功能化复合材料(MWCNTs-PPA/EP)相比, 混杂功能化复合材料(MWCNTs-Epon828-PPA/EP)的力学性能和热学性能最佳。当MWCNTs质量分数为0.3%时, 其拉伸强度、弹性模量和断裂伸长率较纯EP分别提高30%, 62%和26%。   相似文献   

4.
采用原位法制备不同含量还原氧化石墨烯(r GO)/环氧树脂(EP)复合材料。研究r GO含量对r GO/EP复合材料力学性能和形状记忆性能的影响。结果表明,通过溶剂热还原,填充到环氧树脂单体中的GO原位还原成r GO,并可均匀分散在EP基体中。该复合材料的拉伸强度、弹性模量和储能模量均随r GO含量增加呈先升后降态势,在w(r GO)=0.2%(相对于环氧树脂的质量而言)时相对最大;随着r GO含量增加,复合材料的玻璃化转变温度随之增加。当w(r GO)=0.6%时,玻璃化转变温度Tg相对纯环氧树脂提高约45℃,达到102℃,热稳定性显著提高。相应的复合材料具有良好的形状记忆性能,变形可以完全恢复,且r GO/EP复合材料相对纯环氧树脂具有更高的形状固定率与形状恢复温度。  相似文献   

5.
采用4,4′-二氨基二苯甲烷(DDM)处理氧化石墨烯(GO),将处理后的氧化石墨烯(GO-DDM)与环氧树脂(EP)充分混合制备了改性氧化石墨烯/环氧树脂复合材料(GO-DDM/EP)。通过红外光谱(FT-IR)、X射线衍射(XRD)和透射电子显微镜(TEM)等分析方法对GO-DDM进行表征,采用电子万能试验机和悬臂梁冲击试验机对制得的复合材料进行力学性能测试。结果表明:DDM成功地接枝在GO的表面,极大提高了GO在有机溶剂中的分散性,且GO不再分散在水中。当复合材料中的GO-DDM含量为0.9%时,其拉伸强度提升了64.9%,冲击强度提升了17.0%。  相似文献   

6.
对多壁碳纳米管(MWCNTs)进行改性处理,得到表面接枝1,3,5-苯三甲酸的碳纳米管(B-MWCNTs)。分别将MWCNTs和B-MWCNTs分散在环氧树脂基体及上浆剂中,通过缠绕成型法制备含有MWCNTs的碳纤维增强环氧树脂预浸料,并采用热压成型工艺制备MWCNTs/碳纤维环氧树脂复合材料层合板。结果表明,B-MWCNTs在环氧树脂基体和上浆剂中的分散状态明显优于MWCNTs。添加B-MWCNTs后复合材料的玻璃化转变温度(Tg)和失重5%时对应的温度均有所提高。而且,添加B-MWCNTs可以明显提高碳纤维环氧树脂复合材料的力学性能。当MWCNTs含量为0.5%(质量分数)时,B-MWCNTs/碳纤维环氧树脂复合材料层合板的压缩强度、层间剪切强度和冲击后压缩强度(CAI)分别提高了14.3%,37.1%和23.4%。  相似文献   

7.
采用湿法预浸技术和模压工艺制备了氧化石墨烯(GO)改性碳纤维/环氧树脂(CF/EP)复合材料,研究了GO在室温干态及湿热处理后对CF/EP复合材料动态热力学性能和层间剪切性能的影响,并通过微观形貌分析了复合材料的改性机制。结果表明,当GO添加量分别为0.5%和0.8%时,GO-CF/EP复合材料的玻璃化转变温度(Tg)得到明显提高,由CF/EP复合材料的184.4℃分别提高到197.7℃和199.5℃;GO-CF/EP复合材料经湿热处理后,GO-CF/EP复合材料的Tg的保持率比CF/EP略低。GO添加量分别为0.05%和0.1%时,GO-CF/EP复合材料的层间剪切强度由CF/EP复合材料的59.7 MPa分别提高到70.2 MPa和72.2 MPa;GO-CF/EP复合材料进行湿热处理后,GO添加量为0.05%的GO-CF/EP复合材料和GO添加量为0.1%的GO-CF/EP复合材料层间剪切强度较CF/EP复合材料高,但GO-CF/EP复合材料的湿热后层间剪切强度保持率均低于CF/EP复合材料。力学损耗分析表明,GO有效提高了CF与EP基体间的界面黏结作用。微观形貌分析表明,GO的存在可有效分散裂纹能量并使裂纹发生偏转,使GO-CF/EP复合材料抵抗裂纹扩展的能力提高。   相似文献   

8.
通过对胺基化多壁碳纳米管(MWCNTs-NH2)进行改性,得到改性MWCNTs悬浮液(MWCNTs-NH2(M))。分别将羧基化MWCNTs (MWCNTs-COOH)和MWCNTs-NH2(M)分散在环氧树脂(EP)中,采用热熔法制备了多尺度MWCNTs-碳纤维(CF)/EP复合材料。研究了MWCNTs对EP模量、韧性及EP与CF之间界面黏结强度的影响,并分析了MWCNTs与CF上浆剂的作用,评价了多尺度MWCNTs-CF/EP复合材料的力学性能。结果表明:官能团化的MWCNTs可对EP的模量和韧性起到更好的增强作用。MWCNTs接枝的-COOH或-NH2可与CF上浆剂中的环氧基团发生化学反应,提高EP与CF之间的界面剪切强度。MWCNTs-NH2(M)对多尺度MWCNTs-CF/EP复合材料力学性能的增强效果优于MWCNTs-COOH,当MWCNTs-NH2(M)的含量为1wt%时,多尺度复合材料的0°压缩强度、90°压缩强度、弯曲强度、弯曲模量、冲击后压缩强度(CAI)分别提高了16.7%、16.3%、40.9%、30.3%、20.6%。  相似文献   

9.
为了提高碳纤维增强环氧树脂(CF/EP)复合材料在低温(77K)循环条件下的抗微裂纹性能,采用共沉淀法制备了具有良好顺磁性的Fe_3O_4修饰氧化碳纳米管(Fe_3O_4-O—MWCNTs),并研究了Fe_3O_4-O—MWCNTs在环氧树脂(EP)基体中的有序排列对EP及CF/EP复合材料低温性能的影响。结果表明:Fe_3O_4-O—MWCNTs的有序排列可有效提高EP基体的低温力学性能及降低EP基体的热膨胀系数,相对于纯EP,Fe_3O_4-O—MWCNTs改性EP的热膨胀系数降低了41.6%;相对于CF/EP复合材料,Fe_3O_4-O—MWCNTs改性CF/EP复合材料在低温环境下的微裂纹密度降低了56.2%。  相似文献   

10.
为提高玻纤增强环氧树脂复合材料的力学性能,采用静电植绒法将多壁碳纳米管(MWCNTs)附着在玻纤织物表面,得到改性的玻纤织物。利用一种低黏度的环氧树脂和所制得的改性织物,采用真空辅助成型工艺(VARI)制备了MWCNTs改性格玻纤织物/环氧树脂复合材料层合板,表征了层合板的力学性能。对进行力学实验后的MWCNTs改性玻纤织物/环氧树脂复合材料试样断口进行了SEM和OPM观察。结果显示:与未添加MWCNTs的玻纤织物/环氧树脂复合材料层合板相比,添加了MWCNTs的层合板的拉伸强度降低了10.24%,弯曲强度降低了13.90%,压缩强度降低了17.33%,拉伸模量和弯曲模量分别提高了19.38%和16.04%,压缩模量提高了13%;MWCNTs与玻纤织物之间的结合较弱,在拉伸作用下,存在明显的脱粘和分层;将改性玻纤织物在200℃下热压处理2h后,制备的MWCNTs改性玻纤织物/环氧树脂复合材料层合板的力学性能均有所提高,热压处理后树脂与玻纤织物之间的界面结合得到改善。  相似文献   

11.
氧化石墨烯(GO)是石墨烯重要的衍生物之一,通过氧化和超声波分散制备了GO纳米片/环氧树脂复合材料。采用XRD、拉曼光谱、FTIR和TEM表征了GO纳米片的结构与形貌,研究了GO纳米片用量对GO纳米片/环氧树脂复合材料热稳定性、力学性能及介电性能的影响。结果表明:GO纳米片的加入提高了GO纳米片/环氧树脂复合材料失热稳定性;随着GO纳米片填充量的增加,GO纳米片/环氧树脂复合材料的冲击强度和抗弯性能先提高后降低,其介电常数和介电损耗则先减小后增加。GO纳米片填充量为0.3wt%的GO纳米片/环氧树脂复合材料的失重5%时的热分解温度由纯环氧树脂的400.2℃提高到424.5℃,而冲击强度和弯曲强度分别在GO纳米片填充量为0.2wt%和0.3wt%时达到最大,冲击强度由纯环氧树脂的10.5kJ/m2提高到19.7kJ/m2,弯曲强度由80.5 MPa提高到104.0 MPa。  相似文献   

12.
采用多壁碳纳米管(MWCNTs)和丙烯酸酯嵌段共聚物(ACRBC)协同改性制备了多壁碳纳米管-丙烯酸酯嵌段共聚物/环氧树脂(MWCNTs-ACRBC/EP)三元复合材料。通过FTIR、 XPS和SEM对强酸处理后的MWCNTs的性能进行表征,利用DSC法对MWCNTs-ACRBC/EP复合材料的固化反应参数进行表征,采用DMA对MWCNTs-ACRBC/EP复合材料的耐热性进行表征,采用电子力学试验机对MWCNTs-ACRBC/EP复合材料的力学性能进行测试。结果表明:强酸处理后在MWCNTs表面成功形成反应官能团。采用150℃×1 h+180℃×3 h作为MWCNTs-ACRBC/EP复合材料的固化工艺, MWCNTs-ACRBC/EP复合材料的玻璃化转变温度可达197.5℃,提高了13.3%, MWCNTs-ACRBC/EP复合材料的力学性能提高,抗弯强度为144 MPa,弯曲模量为3662 MPa,冲击强度为19.5 kJ/m^2。  相似文献   

13.
采用交流(AC)电场诱导法制备了多壁碳纳米管(MWCNTs)均匀分散且定向有序排列的MWCNTs/环氧树脂复合材料。采用SEM、偏振拉曼光谱等研究了电场强度、MWCNTs含量、加电时间及温度(黏度)等因素对MWCNTs定向排列的影响,讨论了MWCNTs有序排列对MWCNTs/环氧树脂复合材料电学和力学性能的影响。结果表明:MWCNTs沿电场方向有序排列;MWCNTs/环氧树脂复合材料施加AC电场后的拉曼强度明显高于未施加电场的情况;当MWCNTs含量从0wt%增加到0.025wt%时,MWCNTs/环氧树脂复合材料导电率从2.3×10-12 S/cm增加到1.3×10-8 S/cm,增加了约4个数量级;MWCNTs含量为2.5wt%时,MWCNTs/环氧树脂复合材料拉伸强度提高了26.3%。  相似文献   

14.
为了提高环氧树脂的低温力学性能,采用石墨烯与多壁碳纳米管(MWCNTs)协同改性环氧树脂,系统研究了石墨烯-MWCNTs/环氧树脂复合材料的室温(RT)和低温(77K)力学性能。结果表明:当石墨烯的质量分数为0.1wt%,MWCNTs的质量分数为0.5wt%时,纳米填料的加入可同时改善环氧树脂的低温拉伸强度、弹性模量和冲击强度;在此最佳含量下,石墨烯-MWCNTs/环氧树脂复合材料在RT和77K时的拉伸强度皆达到最大值,比纯环氧树脂的拉伸强度分别提高了11.04%和43.78%。石墨烯和MWCNTs能协同提高环氧树脂的低温力学性能。  相似文献   

15.
分别通过超声共混法和原位还原法制备了石墨烯/环氧树脂复合材料。利用X射线光电子能谱(XPS)、X射线衍射(XRD)、光学显微镜和扫描电子显微镜(SEM)对复合材料的结构进行了表征,并对其力学性能进行了测试。结果表明,原位还原法制备的石墨烯/环氧树脂复合材料中,氧化石墨烯已经被成功地还原为石墨烯,并且石墨烯具有良好的分散性。力学性能测试结果表明,两种方法制备的复合材料的力学强度较纯环氧树脂明显提高。当石墨烯的量为m(GO)/m(EP)=0.3/100时,超声混合法制备的石墨烯/环氧树脂复合材料的拉伸强度和弯曲强度分别最大提高约29.2%和1.4%;而原位还原法制备的石墨烯/环氧树脂复合材料的拉伸强度和弯曲强度分别最大提高约40.5%和9.4%。  相似文献   

16.
氧化石墨烯(GO)和纳米氧化锌(ZnO)具有优异的性能,但在环氧树脂中容易出现团聚现象,为解决这一问题,必须对其进行表面改性。以七水合硫酸锌为原料,将ZnO负载到GO表面,通过FT-IR,XRD,SEM,EDS,TG和接触角测试,纳米ZnO均匀分散在GO基体上,并可以在不改变GO片层结构的条件下,改善GO的团聚问题的同时降低GO的亲水性。然后将ZnO负载GO与环氧树脂制备纳米ZnO负载GO/环氧复合材料。结果表明:纳米ZnO负载GO/环氧复合材料力学性能和热稳定性明显提高,当ZnO/GO加入量为0.250%(质量分数)时复合材料综合性能最佳,拉伸强度、拉伸模量、断裂伸长率和冲击强度分别比纯环氧树脂提高了99.87%,12.09%,98.35%和151.48%,吸水率比纯环氧树脂降低了81.48%。  相似文献   

17.
刘国隆  周宏  张宏达  葛静 《复合材料学报》2021,38(10):3237-3244
采用水热合成法制备拟薄水铝石(AlOOH)纳米棒,以3-氨基丙基三乙氧基硅烷(APTES)为表面改性剂,制得mAlOOH,以环氧树脂(Epoxy,EP)为基体,制备AlOOH/EP和mAlOOH/EP复合材料。研究AlOOH和mAlOOH的填充量对AlOOH/EP及mAlOOH/EP复合材料性能的影响。结果表明,mAlOOH明显提高了mAlOOH/EP复合材料的力学性能。mAlOOH的填充量为4wt%时,mAlOOH/EP复合材料的冲击强度和弯曲强度分别比聚合物基体分别提高了259%和44%;填充量不超过5wt%时,mAlOOH/EP的介电常数与介电损耗均略低于纯环氧树脂。当添加量为3wt%时,mAlOOH/EP具有最低的介电常数和介电损耗及最高的玻璃化转变温度(123℃)。   相似文献   

18.
多壁碳纳米管功能化及其增韧环氧树脂的研究   总被引:2,自引:0,他引:2  
采用混酸氧化多壁碳纳米管(MWCNTs),然后将其与过氧化丁二酸反应,接着对其进行酰胺功能化处理,并用功能化后的MWCNTs对环氧树脂(EP)进行增韧改性,研究了不同含量MWCNTs对EP力学性能的影响,探讨了其改性机理.研究结果表明,经过功能化处理,MWCNTs表面成功接上了一定数量的酰胺基团,将其加入到EP中可大幅度提高EP的冲击强度,在其用量为1.5wt%时,冲击强度提高了92%;SEM结果显示,加入MWCNTs后EP由脆性断裂转变为韧性断裂.  相似文献   

19.
用强酸氧化法与等离子体镀膜法分别对原始多壁碳纳米管(MWCNTs)进行表面修饰,制备了MWCNTs改性氰酸酯/环氧树脂基纳米复合材料。对复合材料的断裂面进行SEM分析,研究了表面处理方法对复合材料室温及低温力学性能的影响。结果表明,经等离子体镀膜表面修饰后的MWCNT在基体中分散更为均匀,与基体的界面结合力更强。经等离子体镀膜表面改性后的MWCNTs复合材料,当MWCNTs质量分数为0.3%时,其室温及低温拉伸强度、弹性模量和冲击强度较纯氰酸酯/环氧树脂基体均有不同程度的提高。  相似文献   

20.
《功能材料》2021,52(6)
以氧化石墨烯(GO)为载体,醋酸锌为锌源,采用溶胶-凝胶法成功制备了氧化锌@石墨烯(ZnO@rGO)复合填料并利用傅里叶变换红外光谱(FTIR)、拉曼光谱仪(Raman)、扫描电子显微镜(SEM)对复合填料的结构及微观形貌进行表征。然后以ZnO@rGO作为导热填料,制备了系列环氧树脂(ZnO@rGO/EP)导热绝缘复合材料,研究了填料含量对复合材料性能的影响。结果表明,复合填料能较均匀地分散于环氧树脂基体中,随填量的增加,ZnO@rGO(O_2)/EP复合材料的热导率不断增加,冲击强度先提高后降低。当添加22.04%(体积分数)的ZnO@rGO(O_2)填料时,复合材料的热导率达到0.58 W/(m·K),与纯环氧树脂材料相比提高了205.3%,而冲击强度由纯环氧树脂的15.9 kJ/m~2提高到25.0 kJ/m~2且该复合材料仍保持良好绝缘性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号