首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field emission properties of tetrahedral amorphous carbon films prepared by filtered cathodic vacuum arc technique have been compared with different surface morphologies. With fewer cycles of conditioning, field emission from relatively rough granular ta-C films on nickel-coated silicon substrates was routinely improved, due to a local field enhancement resulting from both a ‘protrusion-on-protrusion’ geometry and a relatively high sp2 content in the film. A 2-MeV ion implantation machine was also employed to intentionally produce local graphitic channels in smooth ta-C films with a high fraction of sp3 content on bare silicon. A relatively low threshold field was obtained from the ta-C film implanted at a dose of 1012 cm−2, which still remained an extremely smooth surface. However, for the highly graphitic sample implanted with a higher dose of over 4×1013 cm−2, no electron field emission was observed, even under a very high electric field of 40 V μm−1. Therefore, a suitable sp2 content in an sp3 matrix, resulting in graphitic conductive channels in amorphous carbon films to produce a local field enhancement, may be the main factor in obtaining low threshold fields. Furthermore, protrusive structures could further increase the field enhancement factor, due to a ‘protrusion-on-protrusion’ geometry.  相似文献   

2.
Field emission has been reported to occur at much lower fields in carbon based thin film systems than from any other material systems. The emission has been shown to depend on the various material parameters, but whichever carbon based system is used, it is found that emission occurs at localised sites rather than uniformly over the entire surface. Carbon films with mixed sp3/sp2 bonding, like nanocrystalline diamond and nanocluster graphitic films emit at lower fields with a higher emission site density than single-phase films. The sp2 cluster size in any carbon film can be altered during deposition, but it is easier to control nanocluster size by post-deposition annealing. Annealing increases the sp2 cluster size embedded in a sp3 matrix until the sp3 matrix disappears completely and the film transforms into nanocrystalline graphite. To distinguish the effects of the sp2 cluster size from other material parameters, a series of different carbon films were annealed post-deposition and the sp2 cluster size was measured using visible Raman. Field emission was then measured at a vacuum of 10−8 mbar on all films using a parallel plate configuration. It was found that the field emission for all films tested depended upon the clustering of the sp2 phase and this effect dominates the effects of the other parameters, such as chemical composition, surface termination, sp3 content or conductivity. The optimum size of the sp2 was of the order of 1 nm for all systems tested. We believe that field emission occurs form the localised conducting, predominantly sp2 bonded regions, which provideds the large field enhancement required for effective emission.  相似文献   

3.
《Diamond and Related Materials》2003,12(10-11):2016-2019
Layer-by-layer deposition method, in which nanometer-thick film deposition and hydrogen plasma annealing processes were alternatively repeated, was applied to fabricate hydrogenated amorphous carbon films in our present work. It was found that the hydrogen plasma treatment changed the sp2/sp3 ratio due to chemical etching. Consequently, a stable vacuum electron emission with a low threshold field was achieved compared with that from conventionally deposited a-C films. The threshold electric field is as low as 2 V/μm. The influence of the hydrogen plasma chemical annealing on the field emission behavior was systematically investigated. The improvement of field emission characteristics can be attributed to the large field enhancement effect due to the inhomogeneous distribution of nanometer scale sp2 clusters.  相似文献   

4.
To investigate the structural dependence of the corrosion resistance of amorphous carbon (a-C:H) films, three different types of a-C:H films etched by nitric acid were evaluated using a surface plasmon resonance (SPR) device with a multilayer structure consisting of an a-C:H layer on Ag. Two non-hydrogenated amorphous carbon (a-C) films and one hydrogenated a-C:H film were synthesized to estimate the effects of the sp2/sp3 ratio and hydrogenation, respectively. A flow cell for the introduction of nitric acid solution was placed on the amorphous carbon layer of the multilayer structure. A 0.3 mM nitric acid solution was used in the etching tests. The Kretschmann configuration was used for SPR measurement, and the SPR angle was determined as the angle with minimum reflectivity. The SPR angle decreased with increasing duration of nitric acid injection into the flow cell, indicating that the film was corroded by the nitric acid. The thickness of the films was calculated from the SPR angle. The rates of decrease in the thickness were 2.2, 0.8, and 1.6 nm/h for the a-C films with lower and higher sp2 contents and the 17 at.% hydrogenated a-C:H film, respectively. Although the hydrogen content had little effect on the rate of change in the film thickness, the film thickness clearly decreased with decreasing sp2/sp3 ratio. These results indicate that the sp2/sp3 ratio is an important factor determining the chemical resistance to nitric acid solution.  相似文献   

5.
Tetrahedral amorphous carbon (ta-C) films have been deposited by filtered cathodic vacuum arc technique. The samples were then annealed at various temperatures in nitrogen and acetylene ambient. The surface morphologies and microstructure of the films were characterized using atomic force microscopy, scanning electron microscopy, visible and ultraviolet Raman spectroscopy. A thin layer of amorphous carbon was deposited on the surface of the ta-C films after annealed at 700 and 800 °C while submicro crystalline pyrolytic graphite was formed on the surface of the ta-C film annealed at 900 °C. The surface layer was found to enhance the sp2 clustering of the underlying ta-C layer. Field emission results reveal that the sp2 cluster size plays an important role in electron field emission properties. The threshold field decreases as the sp2 cluster size increases. For the film annealed at 800 °C, the lowest threshold field and the largest cluster size concurred.  相似文献   

6.
This work investigated the influence of the plasma parameters pressure and RF power on the characteristics of amorphous carbon films deposited by high-density plasma chemical vapor deposition, using inductively coupled methane plasmas. These films show several good electrical characteristics: high resistivity, low dielectric constant and high breakdown field. After deposition, the films were characterized as follows: the thickness was measured with a step height meter and an ellipsometer; Fourier transform infrared spectroscopy was used to identify the sp2 and sp3 hybridization of C and CH bonds and other possible bonds that can appear because of the hydrogen presence; atomic force microscopy was used to measure the film roughness and IV and CV measurements to determine the dielectric constant, the electric resistivity and the breakdown electric field. The films deposited with high-density plasmas showed good characteristics for several applications, when compared to deposition with conventional RF plasmas. These films show a better structural quality with a high sp3 to sp2 ratio. Even with this high sp3 to sp2 ratio, the RMS surface roughness of an approximately 300 nm thick film was only 0.24 nm. For microelectronic applications, a very low dielectric constant of only 1.68 and a high resistivity of 1.5×1014 Ω cm were obtained.  相似文献   

7.
The problems and possible solutions associated with producing practical electronic devices based upon amorphous carbon (a-C) thin films are discussed. The clustering of the carbon sp2 phase is shown to be a critical aspect in understanding the current device limitations. In order to exploit the sp2 clustering we show that the use of ion beams to deposit energy into the microstructure in a controlled manner, as opposed to conventional thermal anneal treatments, results in a delocalised electron wavefunction and an enhancement of conductivity. A barrier controlled device is demonstrated by carefully choosing the ion energy and dose. One of the consequences of ion implantation is that film can now be considered as consisting of conductive sp2 C clusters within an insulating sp3 C matrix. We show that the presence of this dielectric inhomogeneity between the conductive sp2 regions and the sp3 matrix plays an important role in understanding the field emission behaviour from a-C based materials.  相似文献   

8.
Tetrahedral amorphous carbon (ta-C) film was coated on aligned carbon nanotube (CNT) films via filtered cathodic vacuum arc (FCVA) technique. Field electron emission properties of the CNT films and the ta-C/CNT films were measured in an ultra high vacuum system. The IV measurements show that, with a thin ta-C film coating, the threshold electric field (Ethr) of CNTs can be significantly decreased from 5.74 V/μm to 2.94 V/μm, while thick ta-C film coating increased the Ethr of CNTs to around 8.20 V/μm. In addition, the field emission current density of CNT films reached 14.9 mA/cm2 at 6 V/μm, while for CNTs film coated with thin ta-C film only 3.1 V/μm of applied electric field is required to reach equal amount of current density. It is suggested that different field emission mechanisms should be responsible for the distinction in field emission features of CNT films with different thickness of ta-C coating.  相似文献   

9.
We present the soft x-ray spectroscopic study of the ultra-nanocrystalline diamond (UNCD) films with different surface treatments. The samples were prepared by means of microwave plasma enhanced chemical vapor deposition (MPECVD) and the different surface treatments are applied to alter their field emission properties. The electronic properties were subsequently examined by the soft x-ray absorption and x-ray emission spectroscopy at carbon 1s threshold. From the experimental results, there is no significant variation in electronic structure of oxygen- and hydrogen-plasma treated UNCD films. On the other hand, the biased treated UNCD film shows more remarkable change on the sp2 and sp3 states. The formation of sp2 bonding and the reduction of sp3 bonding are the consequence of the improved electron field emission properties.  相似文献   

10.
The effect of single nanosecond laser pulse irradiation on the microstructure and field emission (FE) properties of carbon films is studied. Amorphous carbon films were exposed to a single pulse of a 248 nm Excimer laser with pulse width of 23 ns. Microstructural changes of the films were investigated by Raman spectroscopy, transmission electron microscopy and electron energy loss spectroscopy. FE study was conducted in a parallel plate configuration. It was found that the landscape of the FE properties is not directly correlated to the laser energy in a simple way, whereas low energy laser irradiation (<117 mJ/cm2) leads to a lower emission threshold field due to the formation of sub-nanometer conductive sp2 clusters within the insulating sp3 matrix. A medium energy range (117–362.5 mJ/cm2) would actually reduce field enhancement and increase the threshold field because of the increased size of the same sp2 clusters. Interestingly, a much higher laser energy (>362.5 mJ/cm2) would reverse this effect by forming multiple continuous conductive sp2 channels and thereby reduce the threshold field sharply again.  相似文献   

11.
Amorphous carbon films have several outstanding tribology characteristics, including high hardness, surface smoothness, and low friction. Under tribological conditions, their surface is generally exposed to high-temperature and pressure. Although the structure of amorphous carbon films is likely changed by high temperature and pressure, there have been no reports on such structural changes of the films. To obtain information about their structural changes, synchrotron X-ray diffraction was used to analyze two kinds of amorphous carbon films, a-C:H and a-C:H:Si, under high-temperature and high-hydrostatic pressure conditions. Synchrotron X-ray diffraction was applied to films pressurized by a multi-anvil press installed in the PF-AR NE5C beamline at KEK at room temperature and at a high-temperature around 200 °C. The pair distribution functions derived by Fourier transformation of the obtained scattering intensity profiles showed that the sp2/sp3 ratios for both films decreased as the pressure increased and that the sp2/sp3 ratio for the a-C:H film increased as the temperature increased. This indicates that high-pressure creates sp3 stabilization in a-C:H and a-C:H:Si films while high-temperature creates sp2 transition in a-C:H film. The sp2/sp3 ratio for the a-C:H:Si film did not change much even at high-temperature due to the high thermal-oxidative stability of a-C:H:Si.  相似文献   

12.
Boron carbon nitrogen (BCN) thin films with different carbon contents are deposited on high-speed steel substrates by reactive magnetron sputtering (RMS) and their microstructure and tribological properties are studied. The BCN films with carbon contents from 26.9 wt.% to 61.3 wt.% have an amorphous structure with variable amounts of carbon bonds (sp2C–C, sp2C–N and sp3C–N bonds). A higher carbon content enhances the film hardness but reduces the friction coefficient against GCr15 steel balls in air. BCN films with higher hardness, lower friction coefficient, and better wear resistance can be obtained by increasing the carbon content.  相似文献   

13.
Amorphous hydrogenated carbon (a-C:H) thin films have been deposited in an r.f. PECVD chamber using a magnetic multipole system to confine the plasma. The influence of magnetic field on both the plasma parameters and the film properties has been studied. The results are compared with those obtained under similar conditions using a standard PECVD system. Optical emission spectroscopy (OES) shows an increase in the intensity of the hydrogen and C–H lines in the plasma. EELS, optical, electrical and electron field emission measurements have been used to characterize the deposited films. The sp3/sp2 ratio was increased using the magnetic field and the optical gap was also increased as compared to films grown using a standard process. The electron field emission was found to be improved (higher current density and smaller barrier height) for samples deposited in the presence of the magnetic field.  相似文献   

14.
A phenomenological model based on the rate equations for the carbon sputter deposition on Si surface is proposed. The processes of carbon adsorption, formation of SiC and transition from sp2 to sp3 sites induced by low energy ion bombardment are included. The calibration of the model was performed with the experimental results. The amorphous carbon films were deposited by magnetron sputtering of graphite with Ar+ ions. The energy of ions bombarding the growing film was varied by applying a bias voltage on the substrate. It is shown that the non-monotonous kinetics of film growth is determined by the variations of surface composition at different stages of growth.  相似文献   

15.
The electron emission property of various screen-printed activated carbons was studied. Each activated carbon was characterized with a thick film, which was made of photosensitive paste. The activated carbon made of coal showed the highest emission current density (J) of ∼350 (μA/cm2) and with the lowest threshold electric field (Eth) ∼ 4.2 (V/μm). These results were explained by graphitization factor and sp2/sp3 ratio. The data clearly show that the carbon content in the paste is one of the main factors affecting the morphology of the film surface and field emission properties. As the carbon increases, J increases and Eth decreases.  相似文献   

16.
The present study deals with the deposition of hydrogenated amorphous carbon (a-C:H) films on Si (100) substrates with and without an interlayer of nanocrystalline palladium (nc-Pd) on them, by high-voltage electro-dissociation of N,N-dimethyl formamide (DMF). Significant improvement in the sp3 carbon content has been observed for a-C:H films grown on nc-Pd interlayer as revealed by Fourier transformed infrared (FTIR), Raman, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopic techniques. It is inferred that H2 activation on palladium sites leads to the stabilization of sp3-C bonding, thereby improving the quality of the deposits grown on them.  相似文献   

17.
The initial growth phase of ultrananocrystalline diamond/amorphous carbon nanocomposite films (UNCD/a-C) has been investigated by scanning electron microscopy, atomic force microscopy and especially Raman spectroscopy. As due to resonance effects Raman spectra of carbon materials strongly depend on the excitation wavelength, a multiwavelength analysis has been performed with λexc ranging from the UV region (325 nm) over the visible range (488 and 514 nm) to the IR region (785 nm). In addition, a set of measurements has been performed with a confocal Raman microscope, i.e. depth resolved, with a wavelength of 532 nm. The samples investigated were deposited with constant parameters, the deposition time being the only parameter varied, resulting in film thicknesses from 100 to 500 nm. It turned out that the diamond fraction and also the grain boundary material do not vary during that stage whereas there are slight but distinct changes of the nature of the amorphous matrix which reflect, among others, in a shift of the graphite-related G band to higher wavenumbers and in an increase of the ratio of D and G bands with increasing film thickness. These changes are discussed in terms of the above mentioned resonance effects; the major changes are a transition of hydrogen containing sp2 chains to hydrogen-free condensed sp2 rings when the material is no longer in the surface region of the films but becomes incorporated within the film bulk.  相似文献   

18.
Diamond-like carbon (DLC) films form a critical protective layer on magnetic hard disks and their reading heads. Now tetrahedral amorphous carbon films (ta–C) thickness of 2 nm are becoming the preferred means due to the highly sp3 content. In this paper, Raman spectra at visible and ultraviolet excitation of ta–C films have been studied as a function of substrate bias voltage. The spectra show that the sp3 content of 70 nm thick DLC films increases with higher substrate bias, while sp3 content of 2 nm ultra-thin films falls almost linearly with bias increment. And this is also consistent with the hardness measurement of 70 nm thick films. We proposed that substrate bias enhances mixing between the carbon films and either the Si films or Al2O3TiC substrate such that thin films contain less sp3 fraction. These mixing bonds are longer than C–C bonds, which inducing the hardness decreasing of ultra-thin DLC films with bias. But for 70 nm DLC, the effect of mixing layer can be negligible by compared to bias effect with higher carbon ion energy. So sp3 content will increase for thick films with substrate bias.  相似文献   

19.
Amorphous carbon (a-C) films with various thicknesses depending on the reaction time are deposited on the surface of Ti1.4V0.6Ni alloy electrodes for Ni-MH (nickel-metal hydride) battery by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). With the increasing deposition time, the Raman spectra show a gradually disordered sp2-bonding change of the films and the changing trend of sp2/sp3 is obtained by X-ray photoelectron spectroscopy. The a-C film of depositing for 30 min with the thickness of 400 nm shows a favorable stability in alkaline electrolyte, the capacity is enhanced by 36.2% after 50 cycles than the bare electrode, and the charge voltage is 80 mV lower than the bare one. The a-C film with high sp2-bonded carbon content effectively reduces the charge transfer resistance, and as a coating layer, the dissolution of V of the alloy is also inhibited. In particular, to get a proper discharge voltage and a stable capacity simultaneously, covering completely and an appropriate thickness of the a-C film are crucial for an expected performance.  相似文献   

20.
The relationship between the electron field emission properties and structure of ultra-nanocrystalline diamond (UNCD) films implanted by nitrogen ions or carbon ions was investigated. The electron field emission properties of nitrogen-implanted UNCD films and carbon-implanted UNCD films were pronouncedly improved with respect to those of as-grown UNCD films, that is, the turn-on field decreased from 23.2 V/μm to 12.5 V/μm and the electron field emission current density increased from 10E−5 mA/cm2 to 1 × 10E−2 mA/cm2. The formation of a graphitic phase in the nitrogen-implanted UNCD films was demonstrated by Raman microscopy and cross-sectional high-resolution transmission electron microscopy. The possible mechanism is presumed to be that the nitrogen ion irradiation induces the structure modification (converting sp3-bonded carbons into sp2-bonded ones) in UNCD films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号