首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: Cardiopulmonary bypass (CPB) is characterized by translocation of intestinal endotoxin and subsequent endogenous production of the pro-inflammatory cytokine interleukin-6 (IL-6). Plasma lipid fractions, especially high density lipoproteins, bind and neutralize endotoxin and, therefore, inhibit endotoxin-induced macrophage cytokine production, including IL-6. Increased IL-6 plasma levels have been implicated in adverse consequences associated with CPB. Previous studies demonstrated large interpatient variability in IL-6 plasma levels after CPB. The purpose of this study was to evaluate the relationship between plasma lipid concentrations and the concentrations of IL-6 following CPB in humans. METHODS: In a prospective study, a group of 15 patients selected to exclude variables known to influence post-CPB plasma levels of IL-6 (preoperative left ventricular ejection fraction > 45%, similar durations of aortic cross clamping and total CPB time, similar temperature control during CPB, and avoidance of platelet transfusion and shed mediastinal blood re-infusion), IL-6 was measured at baseline, one and 24 hr post-CPB. RESULTS: Interleukin-6 plasma concentrations (mean +/- SD) increased at one (142 +/- 89 pg.ml-1, P < 0.05) and 24 (129 +/- 82 pg.ml-1, P < 0.05) hr post-CPB compared with baseline (1.5 +/- 1 pg.ml-1) concentrations. An inverse correlation was found between IL-6 plasma concentrations at one hour post-CPB and plasma cholesterol concentrations (r = -0.592, P = 0.02), high density lipoprotein (r = -0.595, P = 0.02), and low density lipoprotein (r = -0.656, P = 0.01). CONCLUSIONS: These results suggest that plasma lipids attenuate the production of IL-6 during CPB and may partly explain the variability of interpatient levels of IL-6 reported post-CPB by others.  相似文献   

2.
BACKGROUND: Generation of extracellular, cytotoxic superoxide anion (O2-) by polymorphonuclear neutrophils (PMNs) contributes to an unbridled inflammatory response that can precipitate multiple organ failure (MOF). Release of O2- is markedly enhanced when activated PMNs have been previously "primed" by inflammatory mediators, such as those expressed after trauma. We therefore hypothesized that PMN priming occurs as an integral part of the early inflammatory response to trauma. METHODS: PMNs were obtained from 17 high-risk patients with torso trauma at 3, 6, 12, 24, 48, and 72 hours after injury, as well as from 10 healthy donors, and the in vitro release of O2- was quantitated with a kinetic, superoxide dismutase (SOD)-inhibitable cytochrome c reduction assay. PMN O2- release was measured in the presence and absence of 1 mumol/L N-formyl-methionyl-leucyl-phenylalanine (fMLP) and after priming and activation with 20 nmol/L platelet-activating factor (PAF) and 1 mumol/L fMLP, respectively. RESULTS: In vitro PMN O2- release was used to determine whether postinjury PMNs were (1) activated in vivo, (2) primed in vivo, or (3) primable in vitro. Unstimulated PMNs from trauma patients spontaneously expressed modest amounts of O2- in vitro from 6 to 48 hours after injury, suggesting endogenous activation. Also, fMLP-activated PMNs collected between 3 and 24 hours after injury expressed more O2- than controls (p < or = 0.02), indicating in vivo, trauma-related priming. Furthermore, postinjury PMNs were maximally primed in vivo (i.e., in vitro exposure to PAF before fMLP activation failed to significantly enhance O2- release) as compared to PMNs treated with fMLP. CONCLUSIONS: These data indicate that major torso trauma (first hit) primes and activates PMNs within 3 to 6 hours after injury. Consequently, we postulate that postinjury priming of PMNs may create an early vulnerable window during which a second hit (e.g., a secondary operation or delayed hemorrhage) activates exuberant PMN O2- release, rendering the injured patient at high risk for MOF.  相似文献   

3.
OBJECTIVE: To evaluate neutrophil functions in the elderly. METHODS: We investigated the PMN migration in vivo and PMN superoxide production and adhesion in response to a variety of compounds; PMN have been isolated both from blood and from a skin experimental exudate (obtained by Senn's skin window technique) of 25 normal elderly and of 25 normal young control subjects. RESULTS: No difference was found in PMN migration in vivo (62.9 +/- 21.3 x 10(6) and 65.5 +/- 9.1 x 10(6) PMN/cm2/24 hours in elderly and young subjects respectively), neither were different the adhesion under basal condition and after some stimuli and the superoxide production in basal condition and in response to STZ and PMA in two groups. In elderly subjects superoxide production, in response to fMLP, markedly resulted lower than in young controls both by circulating PMNs (3.6 +/- 2.7 and 9.3 +/- 3.3 nMOLES O2-/10(6) PMN respectively, p < 0.0001) and by exudate PMNs (13.6 +/- 4.3 and 19.4 +/- 6 nMOLES O2-/10(6) PMNs respectively, p < 0.005). CONCLUSION: Many PMN functions in the elderly do not differ from young people, suggesting that the overall defense function of these cells is not affected by aging. The only parameter that we have found to be different between the two groups is the poor superoxide production after fMLP stimulus of PMNs. The stimulus- and function-specificity of this defect in PMNs from elderly subjects indicates the existence of a dysregulation of the signal transduction pathway distal to fMLP receptor and proximal to NADPH oxidase activation.  相似文献   

4.
1. An immuno-neutralization strategy was employed to investigate the role of endogenous lipocortin 1 (LC1) in acute inflammation in the mouse. 2. Mice were treated subcutaneously with phosphate-buffered solution (PBS), non-immune sheep serum (NSS) or with one of two sheep antisera raised against LC1 (LCS3), or its N-terminal peptide (LCPS1), three times over a period of seven days. Twenty four hours after the last injection several parameters of acute inflammation were measured including zymosan-induced inflammation in 6-day-old air-pouches, zymosan-activated serum (ZAS)-induced oedema in the skin, platelet-activating factor (PAF)-induced neutrophilia and interleukin-1 beta (IL-1 beta)-induced corticosterone (CCS) release. 3. At the 4 h time-point of the zymosan inflamed air-pouch model, treatment with LCS3 did not modify the number of polymorphonuclear leucocytes (PMN) recruited: 7.84 +/- 1.01 and 7.00 +/- 0.77 x 10(6) PMN per mouse for NSS- and LCS3 group, n = 7. However, several other parameters of cell activation including myeloperoxidase (MPO) and elastase activities were increased (2.2 fold, P < 0.05, and 6.5 fold, P < 0.05, respectively) in the lavage fluids of these mice. Similarly, a significant increase in the amount of immunoreactive prostaglandin E2 (PGE2; 1.81 fold, P < 0.05) and IL-1 alpha (2.75 fold, P < 0.05), but not tumour necrosis factor-alpha (TNF-alpha), was also observed in LCS3-treated mice. 4. The recruitment of PMN into the zymosan inflamed air-pouches by 24 h had declined substantially (4.13 +/- 0.61 x 10(6) PMN per mouse, n = 12) in the NSS-treated mice, whereas high values were still measured in those treated with LCS3 (9.35 +/- 1.20 x 10(6) PMN per mouse, n = 12, P < 0.05). A similar effect was also found following sub-chronic treatment of mice with LCPS1: 6.48 +/- 0.10 x 10(6) PMN per mouse, vs. 2.77 +/- 1.20 and 2.64 +/- 0.49 x 10(6) PMN per mouse for PBS- and NSS-treated groups (n = 7, P < 0.05). Most markers of inflammation were also increased in the lavage fluids of LCS3-treated mice: MPO and elastase showed a 2.47 fold and 17 fold increase, respectively (P < 0.05 in both cases); TNF-alpha showed a 11.1 fold increase (P < 0.05) whereas the IL-1 alpha levels were not significantly modified. PGE2 was still detectable in most (5 out of 7) of the mice treated with LCS3 but only in 2 out of 7 of the NSS-treated mice. 5. Intradermal injection of 50% ZAS caused a significant increase in the 2 hoedema formation in the skin of LCS3-treated mice in comparison to PBS- and NSS-treated animals: 16.7 +/- 1.5 microliters vs. 10.8 +/- 1.2 microliters and 10.2 +/- 1.0 microliters, respectively (n = 14 mice per group, P < 0.05). ZAS-induced oedema had subsided by 24 h in control animals but a residual significant amount of extravasation was still detectable in LCS3-treated mice: 4.4 +/- 0.8 microliters (P < 0.05). 6. A recently described model driven by endogenous glucocorticoids is the blood neutrophilia observed following administration of PAF. In our experimental conditions, a single bolus of PAF (100 ng, i.v.) provoked a marked neutrophilia at 2 h (2.43 and 2.01 fold) in NSS- and PBS-treated mice (n = 11), respectively, which was significantly attenuated in the animals treated with LCS3: 1.26 fold increase in circulating PMN (n = 11, P < 0.01 vs. NSS- and PBS-groups). 7. Intraperitoneal injection of IL-1 beta (5 micrograms kg-1) caused a marked increase in circulating plasma CCS by 2 h, to a similar extent in all experimental groups. In contrast, measurement of CCS levels in the plasma of mice bearing air-pouches inflamed with zymosan revealed significant differences between LCS3 and NSS-treated mice at the 4 h time-point: 198 +/- 26 ng ml-1 vs. 110 +/- 31 ng ml-1 (n = 8, P < 0.05). 8. In conclusion, we found a remarkable exacerbation of the inflammatory process with respect to both humoral and cellular components in mice passively immunised agains  相似文献   

5.
Generation of reactive oxygen intermediates (ROI) has been implicated in tissue damage in a variety of disease states including sepsis and trauma. On the other hand, generation of ROI in polymorphonuclear granulocytes (PMN) presents a crucial element in the defence of the host against invading microorganisms. In the present study we investigated the generation of superoxide anions (O2-) and hydrogen peroxide (H2O2) by neutrophils (PMN)5 of 17 critically ill patients treated at a intensive care unit (ICU) after polytrauma (n = 6), heart operation (n = 6) or during septic shock (n = 5) using flow cytometry. O2- production of PMN from ICU patients was significantly lower (p < 0.01) than that in healthy volunteers (HV) during non-receptor mediated stimulation with phorbol-myristate-acetate (PMA) but higher (p < 0.001) during receptor mediated stimulation with formylmethionine-leucine-phenylalanine (FMLP). H2O2 generation of PMN from ICU patients was increased after stimulation with FMLP (p < 0.01) and remained unchanged after stimulation with PMA. Patients in septic shock had lower O2(-)-generation of PMN than did injured patients and patients after heart operations. We conclude that receptor mediated formation of O2- and H2O2 is stimulated in ICU patients. However, in patients in septic shock O2(-)-generation decreases, which potentially might contribute to the immunoparalysis present in septic shock.  相似文献   

6.
OBJECTIVE: Although left ventricular (LV) systolic function undergoes a temporary decrease after cardiopulmonary bypass (CPB) in patients undergoing coronary artery bypass grafting (CABG), data on the effects of CABG and cardioplegic arrest on LV diastolic function are contradictory. The objective of the present study was to further evaluate the effects of CABG and CPB on LV diastolic function. DESIGN: A prospective study. SETTING: A multi-institutional investigation at a university hospital. PARTICIPANTS: 20 patients on beta-receptor antagonists, scheduled for CABG and with a preoperative ejection fraction over 0.5. INTERVENTIONS: Central hemodynamic measurements, transesophageal LV short-axis images, and mitral Doppler flow profiles were obtained before and after volume loading that in turn was performed both before surgical incision and after weaning from CPB. MEASUREMENTS AND MAIN RESULTS: Heart rate, cardiac output, and peak atrial filling velocity increased; systemic vascular resistance decreased; whereas stroke volume, LV area ejection fraction, deceleration rate and slope of early diastolic filling, time-velocity integral of early diastolic filling, and the ratio between early and atrial peak filling velocity were unchanged post-CPB compared with pre-CPB. LV end-diastolic stiffness that was calculated for each patient pre-CPB and post-CPB using the formula: P = B*eS*A), where P is the LV filling pressure and A is the end-diastolic short-axis area, was unchanged post-CPB compared with pre-CPB. CONCLUSIONS: Both the active and passive components of LV diastolic function are well maintained shortly after CABG and cardioplegic arrest in patients with a good preoperative systolic LV function.  相似文献   

7.
OBJECTIVE: To evaluate the role of interleukin 8 (IL-8) in the regulation of neutrophil (PMN) apoptosis in normal plasma and plasma from patients with early, fulminant acute respiratory distress syndrome (ARDS). DESIGN: Experimental study using cultured human PMNs. SETTING: University hospital, level I trauma center. PARTICIPANTS: Plasma was obtained from 6 patients with early, fulminant posttraumatic ARDS (mean Injury Severity Score, 26). All samples were drawn within 24 hours after injury. Plasma was also taken from 13 healthy control subjects. These controls were also used as sources of PMNs. MAIN OUTCOME MEASURES: Effect of early, fulminant ARDS and normal plasma on spontaneous apoptosis, CD16, and CD11-b expression in PMNs in vitro; levels of IL-8 in plasma; correlation of extracellular IL-8 concentration with rate of PMN apoptosis; and effect of IL-8 blockade on PMN apoptosis, CD16, and CD11-b expression in ARDS and normal plasma. RESULTS: Plasma from patients with early, fulminant ARDS inhibited spontaneous PMN apoptosis at 24 hours (35%+/-5% vs 54%+/-5%; P=.01). Neither CD16 nor CD1l-b differed significantly between the 2 groups. The mean plasma level of IL-8 in patients with early, fulminant ARDS was 359+/-161 pg/mL vs 3.0+/-0.4 pg/mL in healthy controls (P<.05). Interleukin 8 inhibited apoptosis in plasma-free medium at low doses (1-50 pg/mL) but had no significant effect at higher doses (100-5000 pg/mL) (P<.05). Interleukin 8 blockade with monoclonal antibody suppressed apoptosis in normal plasma (28%+/-5% with monoclonal antibody vs 51%+/-5% without monoclonal antibody; P=.008) but not in plasma from patients with early, fulminant ARDS (29%+/-5% with monoclonal antibody vs 34%+/-6% without monoclonal antibody; P=.67). It had no effect on CD16 or CD11-b expression in either plasma. CONCLUSIONS: Plasma from patients with early, fulminant ARDS contains soluble factors that inhibit PMN apoptosis in vitro. Low levels of IL-8 inhibit PMN apoptosis in normal plasma. Although plasma levels of IL-8 are markedly elevated in early, fulminant ARDS, IL-8 is not directly responsible for the antiapoptotic effect of plasma from patients with early, fulminant ARDS.  相似文献   

8.
Platelet-activating factor (PAF) concordantly primes neutrophils (PMNs) for superoxide generation and elastase release. beta-Adrenergic stimulation of PMNs enhances cAMP-dependent protein kinase A (PKA) activity and has been shown to inhibit PAF-mediated NADPH-oxidase activity. PMN superoxide generation is thought to play a predominate microbicidal role, whereas elastase is known to mediate untoward PMN-endothelial interactions. We hypothesized that beta-adrenergic neutrophil stimulation has disparate effects on PAF-mediated PMN superoxide generation versus elastase release. Human PMNs were isolated using a standard Ficoll/Hypaque gradient. PMNs were then primed with PAF (200 nM) and activated with fMLP (1 microM). Subsets of PMNs were pretreated for 5 min with a beta agonist (10(-4) M isoprotereno) or an adenylate cyclase agonist (10(-5) M forskolin). Superoxide generation was determined by superoxide dismutase inhibitive cytochrome c reduction. Elastase activity was measured by the cleavage of n-methoxylsuccinyl-A-A-P-V-p-nitroanilide. Pretreatment with isoproterenol and forskolin yielded superoxide generation of 3.2 +/- 0.6 and 3.1 +/- 1.2 nmole/2.5 x 10(5) PMN/min compared to 9.0 +/- 0.6 nmole/2.5 x 10(5) PMN/min for PAF/fMLP alone, whereas isoproterenol and forskolin did not significantly affect PAF-mediated neutrophil elastase release, 22.4 +/- 5.3 and 24.0 +/- 3.6%, respectively, compared to 39.4 +/- 9.1% for PAF/fMLP alone. Disparate PMN signal transduction for superoxide generation versus elastase release may explain the SICU clinical paradox, in which patients are both susceptible to infection and vulnerable to PMN-mediated multiple organ failure.  相似文献   

9.
BACKGROUND: Respiratory failure secondary to cardiopulmonary bypass (CPB) remains a major complication after cardiac surgery. We tested the hypothesis that post-CPB lung function impairment can be prevented by continuous positive airway pressure (CPAP) applied during the CPB. METHODS: In 6 pigs, CPAP with 5 cmH2O pressure was applied during CPB. Six other pigs served as control, i.e. the lungs were open to the atmosphere during CPB. After median sternotomy, the right atrial appendage as well as the ascending aorta were cannulated. The total CPB duration was 90 min with 45 min cardioplegic arrest. Ventilation-perfusion distribution was measured with the multiple inert gas elimination technique and atelectasis by CT-scanning. RESULTS: Large atelectasis appeared after CPB, corresponding to 14.5% +/- 5.5 (percent of the total lung area) in the CPAP group and 18.7% +/- 5.2 in the controls (P = 0.20). Intrapulmonary shunt increased and PaO2 decreased after the CPB in both groups. CONCLUSIONS: We conclude that in this pig model post-CPB atelectasis is not effectively prevented by CPAP applied during CPB.  相似文献   

10.
TB Gilbert  SP Gaine  LJ Rubin  AJ Sequeira 《Canadian Metallurgical Quarterly》1998,22(10):1029-32; discussion 1033
Pulmonary complications including hypoxemia, right heart failure, and prolonged ventilation may follow pulmonary thromboendarterectomy (PTE) performed via cardiopulmonary bypass (CPB) with deep hypothermic circulatory arrest. Seventeen adult patients have undergone PTE at the University of Maryland Medical System during the preceding 3 years. From these patients, clinical and hemodynamic parameters were tabulated pre-CPB, post-CPB, at admission to the intensive care unit (ICU), and prior to discontinuation of invasive monitoring in the ICU. Data on anthropometric variables, survival, and times of extracorporeal circulation, mechanical ventilation, and hospital stay were also collected. The mean values for pulmonary arterial systolic and diastolic pressures and pulmonary vascular resistance (PVR) decreased significantly from pre-CPB values after PTE (all p < 0.05). Mild mixed acidosis present at ICU admission resolved prior to discharge (p = 0.002). The length of mechanical ventilation time was positively correlated with the absolute post-CPB PVR and negatively correlated with the relative change in central venous pressure (CVP) from pre-CPB to post-CPB values (r = 0.75, p = 0.037). Of the pre-CPB anthropometric variables, only body mass index was significantly higher in nonsurvivors (p = 0.037). Pulmonary artery pressures and vascular resistance fall significantly after PTE. A lower post-CPB PVR and a relatively decreased (i.e., from pre-CPB values) CVP predict reduced length of postoperative ventilation but not of the hospital stay. Mortality appears increased in patients with a large body habitus.  相似文献   

11.
Salmeterol, a long-acting beta 2-adrenoceptor agonist, also possesses some anti-inflammatory properties, but whether eosinophils are the target of such action has been equivocal. To clarify the direct effect of salmeterol on eosinophil functions, we have studied the effect of the drug on the various responses of purified human eosinophils. Superoxide anions (O2-) release and adherence to fibronectin-coated plastic plates induced by platelet-activating factor (PAF), interleukin-5 (IL-5), leukotriene B4 (LTB4) and phorbol myristate acetate (PMA), as well as degranulation induced by C5a and formyl methionyl leucyl phenylalanine (FMLP), in the presence of cytochalasin B (CB) were studied. In the concentration range 10(-8)-10(-5) M, the drug inhibited PAF- and IL-5-induced O2- release, with an IC50 values of 3.2 +/- 1.2 x 10(-7) M and 2.2 +/- 0.4 x 10(-6) M, respectively, Superoxide anion release by LTB4 was only modestly inhibited while that due to PMA was completely unaffected. On the other hand, eosinophil adherence induced by all the 4 stimuli were significantly inhibited within the same concentration range. On eosinophil degranulation, the drug failed to significantly inhibit the release of eosinophil peroxidase (EPO) induced by either C5a or FMLP. In contrast, beta-hexoseaminidase (beta-HA) release by the same agents was significantly inhibited, the inhibition being more pronounced for FMLP-induced, than C5a-induced release. None of the effects of the drug was reversed by the selective beta 2-adrenoceptor antagonist ICI 118551 at a concentration of 10(-7) M. These results show that salmeterol may have some direct inhibitory effects on human eosinophil functions but that these effects are both stimulus- and response-dependent, and are unlikely to be mediated via beta 2 adrenoceptors.  相似文献   

12.
Polymorphonuclear neutrophils (PMNs) play a pivotal role in the inflammation that precedes multiple organ failure (MOF). In a rat model of MOF, PMNs become primed for enhanced superoxide anion (O2-) release and CD11b expression, sequester in end organs, and produce organ failure. Therefore, we hypothesized that circulating PMNs harvested in the first 24 hours after injury from trauma patients at risk for MOF would (1) exhibit a primed O2- release, (2) upregulate CD11b expression, and (3) show evidence of sequestration in tissues. Extracellular PMN O2- release and CD11b receptor expression were measured at 3, 6, 12, and 24 hours after injury in 33 torso trauma patients with Injury Severity Scores > 15; eight patients (24%) developed MOF. Healthy adults served as controls. PMNs after injury were primed for enhanced in vitro O2- release at 3, 6, 12, and 24 hours after injury, indicating prior in vivo priming. CD11b expression was also increased at 6, 12, and 24 hours after injury. Circulating PMN numbers increased sharply at 3 hours after injury, before decreasing dramatically at 6 and 12 hours, suggesting end organ sequestration. At 12 hours after injury, declines in circulating PMNs were significantly greater in MOF than in non-MOF patients (p < 0.05). These data indicate that PMNs are quickly mobilized into the circulation after injury and then primed for enhanced O2- release and CD11b expression. PMN priming appears to be a necessary preamble to PMN sequestration in patients with major torso trauma. Upregulation of PMN function, accompanied by subsequent end organ sequestration, may represent an important early event in the pathogenesis of MOF after injury.  相似文献   

13.
Staurosporine (STAR) is one of the most potent inhibitors of protein kinase C (PKC). It is known that in human polymorphonuclear leukocytes (PMNs), the phorbol ester-induced generation of superoxide anion (respiratory burst) is effectively inhibited by STAR in a dose-dependent manner, whereas superoxide generation induced by chemoattractants, e.g. n-formyl-methionyl-leucyl-phenylalanine (FMLP) or PAF, is regulated biphasically by STAR. We compared the effects of STAR and K252a on FMLP-induced superoxide production from PMNs and examined the effects of propranolol, a inhibitor of phosphatidic acid (PA) phosphohydrolase, on the potentiation of the production by STAR. We also examined the effects of some derivatives of STAR and K252a on the production and the alteration of the effects induced by propranolol pretreatment. When PMNs were stimulated with FMLP, STAR potentiated superoxide production by 240.5 +/- 30.9% at a low concentration (100 nmol/l). Propranolol pretreatment specifically inhibited the potentiation. When phorbol-12-myristate-13-acetate (PMA) was used as a stimulant, STAR inhibited superoxide production dose-dependently and did not enhance the production. K252a inhibited PMA or FMLP-induced superoxide production dose-dependently and did not enhance FMLP-induced superoxide production. STAR derivatives showed potentiation of FMLP-induced superoxide production similar to that of STAR at concentrations ranging from 10-100 nmol/l, and propranolol (200 mumol/l) effectively inhibited it. K252a derivative NA332 did not show any potentiative effect on the production. PMA-induced superoxide production was inhibited by all compounds dose-dependently.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We observed that human monocytes (MO) and polymorphonuclear neutrophils (PMN) stimulated by lipopolysaccharide (LPS) produce platelet-activating factor (PAF) in a pattern characterized by an early and a delayed peak of synthesis. The early peak of PAF synthesis was due to a direct stimulation of these cells through mCD14 receptor as it was inhibited by anti-CD14 monoclonal antibody. The delayed and sustained peak of PAF synthesis was dependent on protein synthesis and cytokine production as shown by the inhibitory effect of cycloheximide on both MO and PMN, and of anti-tumour necrosis factor-alpha (anti-TNF-alpha) and of anti-interleukin-8 (anti-IL-8) neutralizing antibodies on MO and PMN respectively. IL-10 completely prevented this second, cytokine-dependent peak of PAF synthesis. In contrast, IL-10 markedly enhanced the first peak of PAF synthesis both in MO and PMN. Moreover, IL-10 was shown to modulate the production of superoxide anions (O2-) on both MO and PMN. As suggested by previous studies, IL-10 inhibited the delayed production of O2-. In the present study, we observed that IL-10 directly stimulated an early production of O2-. In addition, IL-10 enhanced the synthesis of O2- by MO and PMN challenged with LPS. The IL-10-induced O2- production was dependent, at least in part, from its effect on PAF synthesis, as it was inhibited by the PAF receptor antagonist WEB 2170. These results suggest that IL-10 may upregulate the early synthesis of PAF and O2- triggered by direct LPS stimulation, whereas it may downregulate the delayed production of these mediators.  相似文献   

15.
The ability of polymorphonuclear leukocytes (PMNs) to modulate endothelial cell (EC) activation was investigated. Adding PMNs to cultured HUVECs resulted in a release of IL-6 (888 +/- 71 pg/ml, a 35-fold increase over release by the two cell types alone) and IL-8 (45.2 +/- 14.5 ng/ml, a 6.4-fold over PMN release alone and a 173-fold increase over EC release alone). In contrast, the release of TNF-alpha, IL-1beta, and platelet-derived growth factor was not affected by the EC-PMN coculture. Neutralizing mAbs to ICAM-1 or beta2 integrins or a physical segregation of PMNs and ECs did not reduce EC stimulation. In contrast, cell-free supernatants of PMNs recapitulated EC activation with an 18-fold up-regulation of EC IL-6 mRNA. The filtration of PMN supernatant or PMN pretreatment with metabolic antagonists or membrane cross-linking agents all suppressed EC activation. By flow cytometry, PMNs released in the supernatant, heterogeneous membrane-derived microparticles containing discrete proteins of 28 to 250 kDa as resolved by SDS-PAGE. PMN microparticle formation was enhanced by inflammatory stimuli, including formyl peptide and phorbol ester, and was time-dependent, reaching a plateau after a 1-h incubation from stimulation. Purified PMN microparticles induced EC IL-6 release in a reaction that was quantitatively indistinguishable from that observed with unfractionated PMN supernatant and unaffected by a neutralizing Ab to soluble IL-6R. These findings demonstrate that membrane microparticles released from stimulated PMNs are competent inflammatory mediators to produce EC activation and cytokine gene induction.  相似文献   

16.
Intravascular perfluorochemical (PFC) emulsions together with a high oxygen (O2) tension may increase the delivery of dissolved O2 to useful levels. A severely anemic model of cardiopulmonary bypass (CPB) was used to test the hypothesis that a novel PFC emulsion (PFCE; Oxygent [Alliance Pharmaceutical Corp., San Diego, CA] 90% w/v perflubron) used at a high PO2 during bypass delivers sufficient O2 to ameliorate hypoxic myocardial contractile dysfunction. Acutely anemic dogs (N = 42; hematocrit = 15.8 +/- 0.6% [mean +/- SEM] before CPB and 10.9 +/- 0.1% during CPB) were divided into four groups. Group 1 was a control (n = 12). As CPB was initiated, groups 2 (n = 10), 3 (n = 10), and 4 (n = 10) had 1.35 g PFC.kg-1, 2.7 g PFC.kg-1, or 5.4 g PFC.kg-1 added via the venous return cannula. Pre-CPB and post-CPB cardiac function was measured by the first derivative of left ventricular pressure (dP/dtmax). The dP/dtmax on separation from CPB was: group 1, 619 +/- 96; group 2, 738 +/- 56; group 3, 782 +/- 101; and group 4, 828 +/- 100 (p < 0.05 groups 3 and 4 versus group 1). Mortality during the first hour after separation from CPB was higher in group 1 than in PFCE treated dogs; however, this trend did not attain statistical significance (p < 0.065). The PFC dose was higher in survivors than in nonsurvivors (2.6 +/- 0.4 g PFC.kg-1 versus 1.2 +/- 0.5 g PFC.kg-1; p < 0.05). A PFCE used at a high PO2 provides sufficient physically dissolved O2 to relieve myocardial hypoxic injury in a severely anemic model of CPB. Current PFCEs are effective O2 carriers. This finding suggests that they can be used as a temporary erythrocyte substitute to diminish the need for allogeneic transfusions during cardiac operations.  相似文献   

17.
Expression of mRNA for the neutrophil (PMN) chemokine, KC, in rat models of lung injury suggests a role for this chemokine in pulmonary inflammation. We addressed this hypothesis at the protein level by functionally characterizing recombinant rat KC (rKC) in vitro and in vivo. In vitro, rKC induced PMN chemotaxis and increased the expression of CD11b/CD18 on PMNs. Recombinant KC also induced a respiratory burst (quantitated by flow cytometry) in rat PMNs, similar to that caused by its human structural homologue, gro/melanoma growth-stimulating activity, on human PMNs, but less than that caused by IL-8 on human PMNs. Intratracheal instillation of rKC induced dose-dependent PMN influx into airspaces (average PMNs in bronchoalveolar lavage: vehicle = 1.5%, n = 4; rKC (1 microgram) = 11.5%, n = 2; rKC (10 micrograms) = 77.3%, n = 2). A neutralizing anti-KC Ab reduced the chemotactic activity of rat bronchoalveolar lavage fluid collected after the intratracheal administration of LPS (48.3 +/- 8% of control, n = 4). Anti-KC neutralizing Ab markedly inhibited PMN accumulation (71 +/- 6%) within the lungs in response to an intratracheal challenge of LPS. We conclude that rat KC is a major but not exclusive mediator of PMN activation and recruitment during LPS-induced pulmonary inflammation.  相似文献   

18.
GAS6 is a ligand for the tyrosine kinase receptors Rse, Axl, and Mer, but its function is poorly understood. Previous studies reported that both GAS6 and Axl are expressed by vascular endothelial cells (EC), which play a key role in leukocyte extravasation into tissues during inflammation through adhesive interactions with these cells. The aim of this work was to evaluate the GAS6 effect on the adhesive function of EC. Treatment of EC with GAS6 significantly inhibited adhesion of polymorphonuclear cells (PMN) induced by phorbol 12-myristate 13-acetate (PMA), platelet-activating factor (PAF), thrombin, interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), but not that induced by FMLP and IL-8. GAS6 did not affect adhesion to resting EC. Titration experiments showed that high concentrations of GAS6 were needed to inhibit PMN adhesion and that inhibition was dose-dependent at the concentration range of 0.1 to 1 microg/mL. One possibility was that high concentrations were needed to overwhelm the effect of endogenous GAS6 produced by EC. In line with this possibility, treatment of resting EC with soluble Axl significantly potentiated PMN adhesion. Analysis of localization of GAS6 by confocal microscopy and cytofluorimetric analysis showed that it is concentrated along the plasma membrane in resting EC and treatment with PAF induces depletion and/or redistribution of the molecule. These data suggest that GAS6 functions as a physiologic antiinflammatory agent produced by resting EC and depleted when proinflammatory stimuli turn on the proadhesive machinery of EC.  相似文献   

19.
BACKGROUND: Hypothermia decreases anesthetic requirements, but the temperature that completely eliminates anesthetic needs has not been previously determined. METHODS: Eight female goats were anesthetized with isoflurane and catheters were placed in the femoral artery and cranial vena cava, after which the right carotid artery and external jugular vein were dissected free. Peripheral temperature was monitored in the rectum and core temperature in the vena cava. A thermistor was placed in the epidural space via a small burr hole to monitor brain temperature. Minimum alveolar concentration (MAC) for isoflurane was determined by eliciting gross, purposeful movement with a tail clamp. Cardiopulmonary bypass (CPB) was established using bubble oxygenators with venous blood drained from a jugular vein and arterial blood infused with a roller pump into the carotid artery. The animals were cooled to approximately 29 degrees C, and MAC redetermined, after which further cooling to 20 degrees C was accomplished. Isoflurane was eliminated, core and brain temperature adjusted in 2-3 degrees C increments, and the tail clamp applied until two temperatures were found that just permitted and just prevented movement. The animals were rewarmed, isoflurane added, and post-CPB MAC determined. RESULTS: At 38.5 degrees C, pre-CPB MAC was 1.3 +/- 0.1% (mean +/- SEM). At 29.0 degrees C, MAC was 0.7 +/- 0.1%, and the anesthetizing temperature was 20.1 +/- 0.6 degrees C. At 37.3 degrees C, post-CPB MAC was 1.0 +/- 0.1% (P < 0.05 vs. pre-CPB). CONCLUSIONS: These results confirm the rectilinear decrease in MAC seen in previous studies and establishes the anesthetizing temperature at 20 degrees C.  相似文献   

20.
Plasma from 33 patients at risk of multiple organ failure (MOF) after major trauma was tested for a priming effect on neutrophils, and for the presence of platelet-activating factor (PAF) activity and interleukin (IL) 8. Plasma sampled at 3, 6, 12 and 24 h after injury significantly primed normal neutrophils to release mean(s.e.m.) 1.26(0.19), 1.33(0.26), 1.04(0.14) and 0.86(0.13) nmol superoxide per min per 1.3 x 10(6) neutrophils respectively (P < 0.05). Priming at 3 h after injury was inhibited by mean(s.e.m.) 63.8(7.0) per cent by the PAF antagonist, WEB 2170 (P < 0.01). Mean(s.e.m.) plasma IL-8 was raised at 6 and 12 h after injury to 785(183) and 836(175) pg/ml (P < 0.01). At 12 h after injury the plasma IL-8 level correlated directly with the number of units of red blood cells transfused (r = 0.64, P < 0.01), and was significantly higher in the group of six patients who developed MOF (P < 0.05). These data suggest that after trauma the mediators PAF and IL-8 appear sequentially in the circulation, are potential mechanisms of circulating neutrophil priming, and that IL-8 may also be an early biochemical marker predicting the onset of MOF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号