首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A glass with the nominal composition of 28Y48Si24Al83O17N (in equal percentage) was chosen as parent glass in this paper to prepare Y3Al5O12-based glass-ceramics. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to assess the crystallization process of the parent glass. YAG as the only crystalline phase appears in all glass-ceramics produced under 1250°C. A small amount of O’-Sialon secondary phase starts to precipitate from parent glass samples as heat treatment temperature increases to 1250°C. Grain size of the dendrite crystal which corresponds to YAG phase increases and the dendrite branches get thickened as heat treatment temperature increases. Moreover, grain size of YAG phase resulting from two-stage heat treatment is much smaller than that of YAG phase obtained by one-stage heat treatment. The results are relevant to developing improved crystallization treatments for glasses with potential for crystallization to YAG-based glass-ceramics and for heat treatments of YAG/β-SiAlON materials.  相似文献   

2.
CaCu3Ti4O12 (CCTO) was synthesized and sintered by microwave processing at 2·45 GHz, 1·1 kW. The optimum calcination temperature using microwave heating was determined to be 950°C for 20 min to obtain cubic CCTO powders. The microwave processed powders were sintered to 94% density at 1000°C/60 min. The microstructural studies carried out on these ceramics revealed the grain size to be in the range 1–7 μm. The dielectric constants for the microwave sintered (1000°C/60 min) ceramics were found to vary from 11000–7700 in the 100 Hz–00 kHz frequency range. Interestingly the dielectric loss had lower values than those sintered by conventional sintering routes and decreases with increase in frequency.  相似文献   

3.
The nanoindentation in the continuous stiffness measurement (CSM) mode was used to study the nucleation of the plasticity at the nanodeformation of the yttrium-aluminium garnet (YAG) having a low ((111) YAG single crystal after the annealing at the temperature of 1300°C) and a high (polycrystalline yttrium-aluminium garnet with a grain size of ~ 20 μm after the mechanical polishing) density of dislocations. For a sample having a high dislocations density a smooth elastoplastic transition was observed in the nanocontact as a result of the motion and multiplication of dislocations that are already present in the sample. For (111) YAG single crystal after annealing at the temperature of 1300°C an abrupt elastoplastic transition (pop-in) caused by a homogeneous nucleation of dislocations in the region under the contact was observed.  相似文献   

4.
Polycrystalline samples of (Pb0.25Sr0.75)TiO3 (PST75) were prepared by the solid-state reaction method. The effects of firing temperatures and excess PbO on PST75 ceramics were investigated. The PST75 was calcined between 600 and 1000 °C for 3 h and the sintering temperature ranged between 1050 and 1250 °C for 2 h. The optimized calcination and sintering conditions were identified as 950 and 1250 °C, respectively. The lattice parameter c increased, while the lattice parameter a decreased with increased firing temperatures. The average particle size and average grain size increased with increased firing temperatures. After the addition of PbO—excess 0, 1, 3, 5, and 10 wt%—in the PST75 samples, the lattice parameter a decreased. The average particle size and the average grain size increased with the increase of PbO. The porous microstructure slightly decreased with an increasing amount of PbO—up to 3 wt%—then slightly increased with the higher excess PbO. The density was improved by adding 3 wt% of excess PbO. A low dielectric loss was observed from the 3 wt% excess PbO sample.  相似文献   

5.
A one-pot polymerization method using citric acid and glucose for the synthesis of nano-crystalline BaFe0.5Nb0.5O3 is described. Phase evolution and the development of the crystallite size during decomposition of the (Ba,Fe,Nb)-gel were examined up to 1100 °C. Calcination at 850 °C of the gel leads to a phase-pure nano-crystalline BaFe0.5Nb0.5O3 powder with a crystallite size of 28 nm. The shrinkage of compacted powders starts at 900 °C. Dense ceramic bodies (relative density ≥ 90%) can be obtained either after conventional sintering above 1250 °C for 1 h or after two-step sintering at 1200 °C. Depending on the sintering regime, the ceramics have average grain sizes between 0.3 and 52 µm. The optical band gap of the nano-sized powder is 2.75(4) eV and decreases to 2.59(2) eV after sintering. Magnetic measurements of ceramics reveal a Néel temperature of about 23 K. A weak spontaneous magnetization might be due to the presence of a secondary phase not detectable by XRD. Dielectric measurements show that the permittivity values increase with decreasing frequency and rising temperature. The highest permittivity values of 10.6 × 104 (RT, 1 kHz) were reached after sintering at 1350 °C for 1 h. Tan δ values of all samples show a maximum at 1–2 MHz at RT. The frequency dependence of the impedance can be well described using a single RC-circuit.  相似文献   

6.
This paper reports the synthesis and characterization of polycrystalline Bismuth Ferrite (BiFeO3) by high energy ball milling method (HEBM). Bismuth ferrite was mechanically alloyed in a hardened steel vial for 6 h and subsequent molding; the pellet samples went through multi-sample sintering, where the samples were sintered from 425 to 775?°C with 50?°C increments. The phase characterization by X-ray diffraction (XRD) revealed that all the major peaks were of rhombohedral distorted perovskite structure with R3c space group. The XRD patterns showed an improvement of crystallinity with increasing sintering temperature. The morphology of the samples was studied using FESEM showed larger grain size as the sintering temperature increased, consequently increasing the multi-domain grains. The dielectric constant and dielectric loss were observed to increase corresponded to increases in grain size and are mainly due to easier domain wall movement. The capacitance values were observed to be increased when the grain size increases due to increase in sintering temperature.  相似文献   

7.
The microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics doped by Pr6O11 in the content range of 0–5.49 wt% were investigated at different sintering temperatures (1,100, 1,150, 1,175, 1,200 °C). The increase of sintering temperature leads to more dense ceramics, which increases the nonlinear property, whereas it decreases the voltage-gradient and leakage current. With increasing Pr6O11 content, the breakdown voltage increases because of the decreases of ZnO grain size. The improvement of non linear coefficient together with the decrease of leakage current are related to the uniformly distribution of secondary phases along the grain boundaries of the ZnO. The varistors sintered at 1,175 °C with the 3.37 wt% Pr6O11 doping possess the best electrical properties: the varistor voltage, nonlinear coefficient, and leakage current are 340 V/mm, 46 and 0.63 μA, respectively.  相似文献   

8.
We have studied the effect of hot-pressing conditions (different pressure rise rates and isothermal holding temperatures in the range 1450–1550°C) on the microstructure of ceramics produced from nanopowder with the composition Ce0.09Zr0.91O2/MgAl6O10/γ-Al2O3 (20.6, 37.4, and 42.0 wt %, respectively). Firing at 1450°C for 1 h made it possible to obtain fine-grained ceramics with less than 3 μm in grain size. The compaction pressure rise rate was shown to be a key parameter under such thermal conditions (20 + 10°C/min → 1450°C). Grain growth was prevented most effectively when the maximum load, 30 MPa, was reached at a temperature of 1000°C. Under such conditions, the grain size was 0.4–0.8 μm and the relative density reached 98.8%.  相似文献   

9.
Ultrafine strontium barium niobate (Sr0.3Ba0.7Nb2O6, SBN30) powders were prepared by urea method starting from a precursor solution constituting of Sr (NO3)2, Ba (NO3)2, NbF5, urea and polyvinyl alcohol (PVA) as surfactant. Their structural behavior and morphology were examined by means of X-ray diffractometry (XRD) and Scanning electron microscopy (SEM). The results showed that the SBN30 powders crystallized to a pure tetragonal phase at annealing temperatures as low as 750 °C. The average particle size of SBN powders subjected to 750 °C was of the order of 150–300 nm. With increasing calcination temperature,however, the average particle size of the calcined powders increased. The SBN30 ceramic prepared from urea method can be sintered at temperature as low as 1,225 °C. The transition temperature from the ferroelectric phase to the paraelectric phase and the relative dielectric permittivity of the SBN30 powder were less than the corresponding values of the bulk ceramic. The permittivity and loss tangent (tan δ) at room temperature (1 kHz) was found to be 930 and below 0.025.  相似文献   

10.
The solubility of NiO in ZrO2 was studied by X-ray diffraction, TEM, and SQUID magnetometry. Lattice parameter measurements from a similar, established oxide system, NiO−10YSZ, were first used to show that SQUID magnetometry can effectively measure solubility. ZrO2 specimens with 0, 0.5, 1, 2, 3, and 5 percent by mol NiO were prepared via the Pechini method. The specimens were calcined in air at 500, 600, and 1000 °C. The paramagnetic response of the specimens measured with SQUID magnetometry revealed that up to 5 percent by mol NiO is soluble in ZrO2 for specimens calcined at 500 and 600 °C. The relatively large solubility compared with NiO−10YSZ occurs due to the very fine grain size (5–10 nm). The fine grain size is also responsible for stabilizing the tetragonal phase of ZrO2. At the 1000 °C calcination temperature, the ZrO2 is entirely monoclinic, exhibits larger grains (>45 nm), and only dissolves about 0.5 percent by mol or less NiO. The correlations between grain size, ZrO2 polytype, and NiO addition are discussed.  相似文献   

11.
Nanocrystalline ytterbia powders have been synthesized using different precursors prepared by precipitation from nitrate solutions: ytterbium carbonates, oxalates, and hydroxides. The powders have been characterized by X-ray diffraction and scanning electron microscopy. The nature of the precursor has no effect on the crystallization temperature of ytterbia but influences its microstructure. The particles range in shape from spherical to platelike. The average crystallite size of the Yb2O3 powders is 20–25 nm. Raising the heat-treatment temperature from 600 to 1000°C increases the crystallite size to 33–46 nm. The highest thermal stability is offered by the ytterbia powders prepared through carbonate decomposition.  相似文献   

12.
Nano-Li4Ti5O12 powders were synthesized by a simple gel route with acrylic acid, tetrabutyl titanate, and lithium nitrate as the precursors that were made into gels through thermal polymerization. The Li4Ti5O12 powders were obtained by calcination of the gels at 700, 750, and 800 °C. They were characterized by thermal gravimetric analysis, differential thermal analysis, X-ray diffraction, and field emission scanning electron microscopy. The electrochemical performance of these nano-Li4Ti5O12 powders was examined with galvanostatic cell cycling. The average particle size of the 700-, 750-, and 800 °C-calcined powders is about 70, 120, and 400 nm, respectively. The 750 °C-calcined powder exhibits a high capacity of over 160 mAh/g after 100 cycles and a good rate capability with a capacity of 122 mAh/g even at 10C rate.  相似文献   

13.
Bi4Ti3.96Nb0.04O12 thin films were successfully deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a sol–gel method and rapid thermal annealing. The effects of Nb-substitution and annealing temperature (500–800°C) on the microstructure and ferroelectric properties of bismuth titanate thin films were investigated. X-ray diffraction analysis reveals that the intensities of (117) peaks are relatively broad and weak at annealing temperatures smaller than 700°C. With the increase of annealing temperature from 500°C to 800°C, the grain size of Bi4Ti3.96Nb0.04O12 thin films increases. The Bi4Ti3.96Nb0.04O12 thin films annealed at 700°C exhibit the highest remanent polarization (2P r), 36 μC/cm2 and lowest coercive field (2E c), 110 kV/cm. The improved ferroelectric properties can be attributed to the substitution of Nb5+ to Ti4+ in Bi4Ti3O12 assisting the elimination of defects such as oxygen vacancy and vacancy complexes.  相似文献   

14.
A solid-state reaction method was used to synthesize nano-sized, Ca-doped BaTiO3 powder with high tetragonality (=c/a) in order to increase the volumetric efficiency of multilayer ceramic capacitors (MLCCs). The reaction temperatures for three different starting material combinations were examined by thermogravimetric/differential thermal analysis (TG/DTA). Nano-sized starting materials and the mechanochemical activation of the needle-shaped BaCO3 via high-energy milling were effective in decreasing the reaction temperature. In addition, the results showed that the tetragonality of fine Ca-doped BaTiO3 could be enhanced by 2-step heat treatment, consisting of holding at 800 °C for 1 h followed by consecutive heating to the target temperature, without any significant grain growth than that of the conventional 1-step calcination. The synthesized particles heat-treated at 950 and 1,000 °C by 2-step heat treatment were confirmed by characterization to have an average size of 128 and 212 nm, and a tetragonality of 1.0097 and 1.0105, respectively, which are higher tetragonality values than those previously reported for similar sized particles.  相似文献   

15.
The low thermal expansion ceramic system, Ca1-xSr{x}Zr4P6O24, for the compositions with x = 0, 0.25, 0.50, 0.75 and 1 was synthesized by solid-state reaction. The sintering characteristics were ascertained by bulk density measurements. The fracture surface microstructure examined by scanning electron microscopy showed the average grain size of 2.47 μm for all the compositions. The thermal expansion data for these ceramic systems over the temperature range 25–800°C is reported. The sinterability of various solid solutions and the hysteresis in dilatometric behaviour are shown to be related to the crystallographic thermal expansion anisotropy. A steady increase in the amount of porosity and critical grain size with increase in x is suggested to explain the observed decrease in the hysteresis.  相似文献   

16.
We have carried out thermodynamic modeling of the GaI3–S and ZnI2–S systems by the method of equilibrium constants and calculated the chemical compositions of the condensed and vapor phases in the temperature range 200–500°C. Our experimental data demonstrate the feasibility of preparing zinc thiogallate by reacting gallium(III) iodide and zinc(II) iodide with sulfur. Synthesis was carried out at a temperature of 450°C over a period 2 h, followed by calcination of the product at 650°C in order to remove the residual iodine. The practical ZnGa2S4 yield was 92–94%.  相似文献   

17.
Al-substituted M-type hexaferrite is a highly anisotropic ferromagnetic material. In the present study, the coprecipitation and the citric-combustion methods of synthesis for SrAl4Fe8O19 powders were explored and their microstructure, magnetic properties, and microwave absorptivity examined. X-ray diffraction (XRD), scanning electron microscopy (SEM), a vibrating sample magnetometer, and a vector network analyser were used to characterize the powders. The XRD analyses indicated that the pure SrAl4Fe8O19 powder was synthesized at 900°C and 1000°C for 3 h by coprecipitation, but only at 1000°C for the citric-combustion processes. The SEM analysis revealed that the coprecipitation process yielded a powder with a smaller particle size, near single-domain structure, uniform grain morphology, and smaller shape anisotropy than the citric-combustion process. The synthesis technique also significantly affected the magnetic properties and microwave-absorptivity. Conversely, calcining temperature and calcining time had less of an effect. The grain size was found to be a key factor affecting the property of the powder. The powders synthesized by coprecipitation method at calcining temperature of 900°C exhibited the largest magnetization, largest coercivity, and best microwave absorptivity.  相似文献   

18.
Barium-cobalt-bismuth-niobate, Ba0.5Co0.5Bi2Nb2O9 (BCoBN) nanocrystalline ferroelectric ceramic was prepared through chemical route. XRD analysis showed single phase layered perovskite structure of BCoBN when calcined at 650 °C, 2 h. The average crystallite size was found to be 18 nm. The microstructure was studied through scanning electron microscopy. The dielectric and ferroelectric properties were investigated in the temperature range 50–500 °C. The dielectric constant and dielectric loss plot with respect to temperature both indicated strong relaxor behavior. Frequency versus complex impedance plot also supported the relaxor properties of the material. The impedance spectroscopy study showed only grain conductivity. Variation of ac conductivity study exhibited Arrhenius type of electrical conductivity where the hopping frequency shifted towards higher frequency region with increasing temperature. The ac conductivity values were used to evaluate the density of state at the Fermi level. The minimum hopping distance was found to be decreased with increasing temperature.  相似文献   

19.
The polycrystalline sample of bismuth based-complex multiferroic of a composition Bi0.5Pb0.5Fe0.5Ce0.5O3 was prepared by a high-temperature solid-state reaction technique (calcinations temperature = 900 °C, sintering temperature = 960 °C, time = 4 h). Preliminary structural analysis using XRD data exhibits the formation of a single-phase compound. Studies of surface morphology of the ceramic sample of the compound, recorded at room temperature using a scanning electron microscope, show uniform distribution of grains of different size with few voids. Detailed studies of dielectric properties (εr, tan δ) supported the existence of multiferroic properties in the above complex system. The analysis of impedance parameters, recorded in a wide frequency (1 kHz–1 MHz) and temperature (room temperature to 450 °C) range of the material provide better understanding of (a) role of grains and grain boundaries in resistive and capacitative characteristics, (c) structure-properties relationship and (b) type of relaxation process occurred in the material. Study of temperature dependence of dc conductivity of the compound shows the existence of negative temperature coefficient of resistance in it. The nature of variation of ac conductivity with temperature of the material follows the Josher’s universal power law. Study of magneto-electric characteristics of the sample at room temperature has provided many useful and new data on magneto-electric coupling coefficient of different orders.  相似文献   

20.
In this paper, the effects of doping with GeO2 on the synthesis temperature, phase structure and morphology of (K0.5Na0.5)NbO3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powders with good crystallinity and compositional homogeneity can be obtained after calcination at up to 900°C for 2 h. Introducing 0.5 mol.% GeO2 into the starting mixture improved the synthesis of the KNN powders and allowed the calcination temperature to be decreased to 800°C, which can be ascribed to the formation of the liquid phase during the synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号