首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sliding mode based finite-time control scheme is presented to address the problem of attitude stabilization for rigid spacecraft in the presence of actuator fault and external disturbances. More specifically, a nonlinear observer is first proposed to reconstruct the amplitude of actuator faults and external disturbances. It is proved that precise reconstruction with zero observer error is achieved in finite time. Then, together with the system states, the reconstructed information is used to synthesize a nonsingular terminal sliding mode attitude controller. The attitude and the angular velocity are asymptotically governed to zero with finite-time convergence. A numerical example is presented to demonstrate the effectiveness of the proposed scheme.  相似文献   

2.
The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control.  相似文献   

3.
In this research, a robust feedback linearization technique is studied for nonlinear processes control. The main contributions are described as follows: 1) Theory says that if a linearized controlled process is stable, then nonlinear process states are asymptotically stable, it is not satisfied in applications because some states converge to small values; therefore, a theorem based on Lyapunov theory is proposed to prove that if a linearized controlled process is stable, then nonlinear process states are uniformly stable. 2) Theory says that all the main and crossed states feedbacks should be considered for the nonlinear processes regulation, it makes more difficult to find the controller gains; consequently, only the main states feedbacks are utilized to obtain a satisfactory result in applications. This introduced strategy is applied in a fuel cell and a manipulator.  相似文献   

4.
5.
针对刚性航天器在姿态跟踪控制中存在的系统不确定及外界干扰等问题,提出了一种预定义时间滑模控制器(PTSMC).首先,给出了以四元数为姿态参数的航天器姿态跟踪控制系统,利用误差四元数和误差角速度设计了预定义时间滑模面.然后,考虑了航天器系统的不确定性和外界干扰设计了一种非保守上界的PTSMC,并通过边界层技术降低了系统抖...  相似文献   

6.
This article investigates the velocity-free attitude coordinated tracking control scheme for a group of spacecraft with the assumption that the angular velocities of the formation members are not available in control feedback. Initially, an angular velocity observer is constructed based on each individual's attitude quarternion. Then, the distributed attitude coordinated control law is designed by using the observed states, in which adaptive control method is adopted to handle the external disturbances. Stability of the overall closed-loop system is analyzed theoretically, which shows the system trajectory converges to a small set around origin with fast convergence rate. Numerical simulations are performed to demonstrate fast convergence and improved tracking performance of the proposed control strategy.  相似文献   

7.
The heavy equipment industry is building more and more equipment with electro-hydraulic control systems. The existing industry practices for the design of control systems in construction machines primarily rely on classical designs coupled with ad-hoc synthesis procedures. Such practices produce desirable results, but lack a systematic procedure to account for invariably present plant uncertainties in the design process as well as coupled dynamics of the multi-input multi-output (MIMO) configuration. In this paper, two H based robust control designs are presented for an automatic bucket leveling mechanism of a wheel loader. In one case, the controller is designed for the base plant model. In another case, the controller is designed for the plant with a feedback linearization control law applied yielding improved stability robustness. A MIMO nonlinear model for an electro-hydraulically actuated wheel loader linkage is considered. The robustness of the controller designs are validated by using analysis and by simulation using a complete nonlinear model of the wheel loader linkage and hydraulic system.  相似文献   

8.
The study investigates a novel fuzzy feedback linearization strategy for control. The main contributions of this study are to construct a control strategy such that the resulting closed-loop system is valid for any initial condition with almost disturbance decoupling performance, and develop the feedback linearization design for some class of nonlinear control systems. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. Once the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control is immediately applied via a human expert’s knowledge to improve the convergence rate. One example, which cannot be solved by the first paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the almost disturbance decoupling and the convergence rate performances are easily achieved by the proposed approach.  相似文献   

9.
This paper provides new results of the dynamical modeling and controller designing for autonomous close proximity phase during rendezvous and docking in the presence of kinematic couplings and model uncertainties. A globally defined relative motion mechanical model for close proximity operations is introduced firstly. Then, in spite of the kinematic couplings and thrust misalignment between relative rotation and relative translation, robust adaptive relative position and relative attitude controllers are designed successively. Finally, stability of the overall system is proved that the relative position and relative attitude are uniformly ultimately bounded, and the size of the ultimate bound can be regulated small enough by control system parameters. Performance of the controlled overall system is demonstrated via a representative numerical example.  相似文献   

10.
This paper investigates the prescribed performance attitude control problem for flexible spacecraft subject to external disturbances and actuator constraints. By using a new performance function and an error transformation, the attitude control system is transformed into an error system which will be kept bounded to ensure expected dynamic and steady-state responses. Compared with the commonly used performance function, the modified one has an explicit prespecified terminal time which determines the maximum convergence time of the attitude control system. A modal observer and a disturbance observer are designed to deal with the flexible vibration and disturbances, respectively. Furthermore, when considering actuator saturation, an improved control strategy is developed with an auxiliary system utilized to compensate the saturation. The stability of the closed-loop system is analyzed by Lyapunov theory. Simulation results show the effectiveness and performance of the proposed methods.  相似文献   

11.
This paper investigates the distributed coordinated attitude tracking control problem for spacecraft formation with time-varying communication delays under the condition that the dynamic leader spacecraft is a neighbor of only a subset of follower spacecrafts. We consider two cases for the leader spacecraft: i) the attitude derivative is constant, and ii) the attitude derivative is time-varying. In the first case, a distributed estimator is proposed for each follower spacecraft by using its neighbors’ information with communication delays. In the second case, to express the dynamic leader’s attitude, an improved distributed observer is developed to estimate the leader’s information. Based on the estimated values, adaptive coordinated attitude tracking control laws are designed to compensate for parametric uncertainties and unknown disturbances. By employing the Lyapunov–Krasovskii functional approach, the attitude tracking errors and estimation errors are proven to converge to zero asymptotically. Numerical simulations are presented to illustrate the effectiveness of theoretical results.  相似文献   

12.
Tracking control of robot manipulators via output feedback linearization   总被引:1,自引:0,他引:1  
This paper presents a robot manipulator tracking controller based on output feedback linearization. A sliding mode perturbation observer (SPO) is designed to estimate unmeasurable states and system perturbations that involve system nonlinearities, disturbances and unmodelled dynamics. The use of SPO allows to input/output linearize and decouple the strongly coupled nonlinear robot manipulator system merely by the feedback of joint angles. The controller design does not need an accurate model of the robot manipulator. Simulation studies are undertaken based on a two-link robot manipulator to evaluate the proposed approach. The simulation results show that the proposed controller has more superior tracking control performance, with payload changing in a wide range, in comparison with a sliding mode controller (SMC) designed based on state feedback linearization with full states available. Selected from Journal of Shenzhen University (Science & Engineering), 2005, 22(3)  相似文献   

13.
This paper introduces a new class of an optimal stabilizing feedback control law for the attitude of motion of a rotating rigid body using rotors system which rotate with the help of electrical motors that are mounted on this body. The control moments that can be generated by the rotors system are derived as non-linear terms of new parameterizations of the rotation group. The stabilizing properties of the proposed control law are proved by using the optimal Liapunov function. Some known results on the control of the rigid body motion are generalized and other new results are obtained. Finally, numerical examples demonstrate the theoretical results.  相似文献   

14.
This paper investigates the anti-unwinding finite-time attitude synchronization control problem for Spacecraft formation flying with external disturbances. Two finite-time controllers are designed based on rotation matrix and terminal sliding mode method. By designing a novel sliding mode surface, the first controller is developed when the upper bound of the external disturbances can be exactly known. However, this value is not always available in reality. In addition, the direct use of the upper bound of the external disturbances can result in the chattering problem. For the purpose of overcoming the disadvantage of the first controller, a modified control law is proposed, in which the adaptive law is applied to estimate the unknown value online. Theoretical analysis and numerical simulations are presented to demonstrate the validity of the proposed controllers.  相似文献   

15.
This paper investigates a fractional terminal sliding mode control for flexible spacecraft attitude tracking in the presence of inertia uncertainties and extern...  相似文献   

16.
In this paper, a fast terminal sliding mode control (FTSMC) scheme with double closed loops is proposed for the spacecraft attitude control. The FTSMC laws are included both in an inner control loop and an outer control loop. Firstly, a fast terminal sliding surface (FTSS) is constructed, which can drive the inner loop tracking-error and the outer loop tracking-error on the FTSS to converge to zero in finite time. Secondly, FTSMC strategy is designed by using Lyaponov's method for ensuring the occurrence of the sliding motion in finite time, which can hold the character of fast transient response and improve the tracking accuracy. It is proved that FTSMC can guarantee the convergence of tracking-error in both approaching and sliding mode surface. Finally, simulation results demonstrate the effectiveness of the proposed control scheme.  相似文献   

17.
In this paper, the algorithm for a real time attitude estimation of a spacecraft motion is investigated. The proposed algorithm for attitude estimation is the second order nonlinear filter form not containing truncation error in estimation values. The proposed second order nonlinear filter has improved performance compared with the EKF (extended Kalman filter), because the algorithm does not contain any truncation bias and covariance of the estimator is compensated by the nonlinear terms of the system. Therefore, the proposed second order nonlinear filter is a suboptimal estimator. However, the proposed estimator requires a lot of computation because of an inherent nonlinearity and complexity of the system model. For more efficient computation, this paper introduces a new attitude estimation algorithm using the state divided technique for a real time processing which is developed to provide an accurate attitude determination capability under a highly maneuverable dynamic environment. To compare the performance of the proposed algorithm with the EKF, simulations have been performed with various initial values and measurement covariances. Simulation results show that the proposed second order nonlinear algorithm outperforms the EKF. The proposed algorithm is useful for a real time attitude estimation since it has better accuracy compared with the EKF and requires less computing time compared with any existing nonlinear filters.  相似文献   

18.
针对轴向永磁偏置磁轴承一侧线圈无电流时磁轴承承载能力下降且非线性增强的情况,提出一种反馈线性化与保性能控制相结合的组合容错控制策略来提高轴向磁轴承在故障情况下的承载能力并使其能在承重时稳定悬浮转子。首先,建立了故障情况下后轴向磁轴承-转子系统的非线性动力学模型,通过反馈线性化方法使系统大范围线性化。然后,在考虑参数摄动的基础上设计最优保性能控制器使转子稳定悬浮。最后,在轴向一侧线圈无电流的永磁偏置磁悬浮转子上进行了多项实验。实验结果表明,所设计的组合容错控制器实现了承重情况下转子的稳定悬浮,摄动最大的参数变化约35%时位移跳动量峰值为2.6μm,超调量小于3%,调节时间为82ms。结果验证了该方法不仅能实现容错控制,而且具有良好的动静态性能及鲁棒性。  相似文献   

19.
The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields.Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance,so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints.Thus,sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process.Due to the switching effects of the variable structure controller,once the tracking error reaches the designed hyper-plane,it will be restricted to this plane permanently even with the existence of external disturbances.Thus,precise attitude regulation can be achieved.Furthermore,taking the non-zero initial tracking errors and chattering phenomenon into consideration,saturation functions are used to replace sign functions to smooth the control torques.The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller.Mathematical models of free-floating space manipulator are established and simulations are conducted in the end.The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm,the steady state error is 0.000 2 rad.In addition,the joint tracking trajectory is smooth,the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input.The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion,and improves the precision of the spacecraft attitude regulation.  相似文献   

20.
为了实现对空间失效卫星、空间碎片等非合作目标,尤其是具有自旋运动特性的目标进行在轨服务或者离轨清除,需要精确完成追踪飞行器与目标飞行器之间的相对姿态测量。首先,以逆深度参数化表示相机在世界坐标系下的坐标值、高低角、方位角和深度信息,可以有效解决小视差情况下的单目视觉姿态估计。其次,建立了相机相对于非合作目标的运动模型和测量模型。最后,基于单点随机抽样和扩展卡尔曼滤波实现了相机和目标之间的相对运动姿态估计。实验结果表明:对于三轴稳定目标,接近过程中姿态测量精度约为0.5°;对于匀速慢旋目标,相对角度误差约为3.5%,平均角速度误差约为0.1°/s。可以满足工程上空间非合作目标相对姿态测量的使用需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号