首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method to predict surface roughness in real time was proposed and its effectiveness was proved through experiment in this paper. To implement the proposed method in machining process, a sensor system to measure relative displacement caused by the cutting operation was developed. In this research, roughness of machined surface was assumed to be generated by the relative motion between tool and workpiece and the geometric factors of a tool. The relative motion caused by the machining process could be measured in process using a cylindrical capacitive displacement sensor (CCDS). The CCDS was installed at the quill of a spindle and the sensing was not disturbed by the cutting. The workpiece was NAK80 and TiAlN coated carbide end mills were used in the test. Model to predict surface roughness was developed. A simple linear regression model was developed to predict surface roughness using the measured signals of relative motion. Close relation between machined surface roughness and roughness predicted using the measured signals was verified with similarity of about 95%.  相似文献   

2.
A real time monitoring and diagnosis system to measure spindle center displacement (roundness error) during turning operation is introduced in this paper. The system was developed based on the three-point method. The error generated during cutting process was monitored and diagnosed by using a system equipped with a designed DSP (Digital Signal Processor) board and FFT (Fast Fourier Transform) algorithm. The system could estimate cutting force and predict other cutting characteristics such as chattering and tool wear. Using the spindle center fluctuation, i.e. a roundness error movement from the center, the relationship between the cutting force and the roundness error could also be investigated. The roundness error that eliminated geometric shape error and eccentric error from the measured signals in the frequency domain proved to be a dominating factor in determining cutting characteristics.  相似文献   

3.
This article presents a method of measuring cutting forces from the displacements of rotating spindle shafts. A capacitance displacement sensor is integrated into the spindle and measures static and dynamic variations of the gap between the sensor head and the rotating spindle shaft under cutting load. To calibrate the sensing system, the tool is loaded statically while the deflection of the tool is measured with the capacitance probe. With this calibration, the displacement sensor can be used as an indirect force sensor. However, the measurement bandwidth is limited by the natural modes of the spindle structure. If cutting force frequency contents are within the range of the natural modes of the spindle structure or higher, the measurements are distorted due to the dynamic characteristics of the spindle system. In order to increase the bandwidth of the indirect force sensor by compensating for the spindle dynamics, the design of a Kalman filter scheme, which is based on the frequency response function (FRF) of the displacement sensor system to the cutting force, is presented in this paper. With the suggested sensing and signal processing method, the frequency bandwidth of the sensor system is increased significantly, from 350 to approximately 1000 Hz. The proposed indirect force sensor system is tested experimentally by conducting cutting tests up to 12,000 rpm with a five-fluted end mill. Besides cutting forces, the measured displacements can also be affected by factors such as roundness errors, unbalance at different speeds, or dilatation of the spindle shaft due to temperature variations. Methods to compensate for these disturbing effects are also described in the paper.  相似文献   

4.
Dynamic Compensation of Spindle-Integrated Force Sensors   总被引:2,自引:0,他引:2  
Y. Altintas 《CIRP Annals》2004,53(1):305-308
This paper presents a dynamically compensated Spindle-Integrated Force Sensor system to measure cutting forces. Piezo-electric force sensors are integrated into the stationary spindle housing to measure cutting forces in three directions. The transfer function of the spindle structure between the cutting forces acting on the tool tip and the measured forces at the spindle housing are identified. Using the cutting force signals measured at the spindle housing, a Kalman filter is designed to filter the influence of structural modes on the force measurements. The frequency bandwidth of the force measurement system is significantly increased with the proposed sensor and the signal processing method. Milling experiments with tooth passing frequencies up to 1000 Hz are presented with effective removal of cutting force distortions caused by three structural modes of the spindle.  相似文献   

5.
This paper introduces a new diagnosis technique for tool breakage in face milling using a support vector machine (SVM). The features of spindle displacement signals are first fed into the kernel-based SVM decision function. After the SVM learning procedure, the SVM can respond in real-time to automatically diagnose tool fracture under varying cutting conditions. Experimental results show that this new approach can detect tool breakage in a wide range of face-milling operations.  相似文献   

6.
Two measurement methods of using a rotating cylinder workpiece, which are referred to as the one-probe method and the two-probe method, respectively, are proposed for measurement of the horizontal error motion (X-directional error motion) of the Z-slide of an ultra-precision diamond turning machine. In the one-probe method, a displacement probe mounted on the opposite position of the turned (self-cut) cylinder workpiece with respect to the cutting tool is moved by the Z-slide to scan the workpiece being rotated by the spindle with its axis of rotation along the Z-axis. The Z-slide error can be obtained by an averaged output of the probe over one rotation without the influence of the spindle error and the surface form error of the cylinder. In the two-probe method, in addition to the displacement probe used in the one-probe method, another displacement probe is mounted at the position of the cutting tool. The rotating cylinder is scanned along the Z-direction by the two displacement probes simultaneously and the Z-slide error can be accurately measured by using the averaged output of the two probes over one rotation. Both the methods can measure not only the out-of-straightness component of the slide error but also the out-of-parallelism of the Z-slide axis with respect to the spindle axis. Experiments are carried out to verify the feasibility of the proposed methods.  相似文献   

7.
A multi-sensor monitoring strategy for detecting tool failure during the milling process is presented. In this strategy, both cutting forces and acoustic emission signals are used to monitor the tool condition. A feature extracting algorithm is developed based on a first order auto-regressive (AR) model for the cutting force signals. This AR(1) model is obtained by using average tooth period and revolution difference methods. Acoustic emission (AE) monitoring indices are developed and used in determining the setting threshold level on-line. This approach was beneficial in minimizing false alarms due to tool runout, cutting transients and variations of cutting conditions. The proposed monitoring system has been verified experimentally by end milling Inconel 718 with whisker reinforced ceramic tools at spindle speeds up to 3000 rpm.  相似文献   

8.
Spindle and tool vibration measurements are of great importance in both the development and monitoring of high-speed milling. Measurements of cutting forces and vibrations on the stationary spindle head is the most used technique today. But since the milling results depend on the relative movement between the workpiece and the tool, it is desirable to measure on the rotating tool as close to the cutters as possible. In this paper the use of laser vibrometry (LDV) for milling tool vibration measurements during cutting is demonstrated. However, laser vibrometry measurements on rotating surfaces are not in general straight forward. Crosstalk between vibration velocity components and harmonic speckle noise generated from the repeating revolution of the surface topography are problems that must be considered. In order to overcome the mentioned issues, a cylindrical casing with a highly optically smooth surface was manufactured and mounted on the tool to be measured. The spindle vibrations, radial tool misalignment, and out-of-roundness of the measured surface were filtered out from the signal; hence, the vibrations of the cutting tool were resolved. Simultaneous measurements of cutting forces and spindle head vibrations were performed and comparisons between the signals were conducted. The results showed that vibration velocities or displacements of the tool can be obtained with high temporal resolution during cutting load and therefore the approach is proven to be feasible for analysing high-frequency milling tool vibrations.  相似文献   

9.
In this paper, the characterizing and modeling of the thermal growth of a motorized high speed spindle is reported. A motorized high speed spindle has more complicated dynamic, non-stationary and speed-dependent thermal characteristics than conventional spindles. The centrifugal force and thermal expansion occurring on the bearings and motor rotor change the thermal characteristics of the built-in motor, bearings and assembly joints. It was found that conventional static models using regression analysis and artificial neural network failed to give satisfactory model accuracy and robustness. An auto-regression dynamic thermal error model, that considers the temperature history and spindle-speed information, has been proposed and proved to improve the model accuracy. However, it was found that temperature-based thermal error models, that correlated thermal displacement of the rotating cutting tool to the temperature measurements on the spindle housing, were not robust. Many nonlinear and time-varying thermal sources, such as coolant jacket, motor air gap, motion joints and assembly interfaces influence thermal displacement. The relationship between temperature measurements and thermal displacements is highly nonlinear, time-varying and non-stationary. A new thermal model which correlates the spindle thermal growth to thermal displacements measured at some locations of the rotating spindle shaft has been proposed. It was found that the displacement-based thermal error model has much better accuracy and robustness than the temperature-based model.  相似文献   

10.
The thermal behavior of a machine tool is an important indicator for the grade of production accuracy and indirectly for the market success. The load-dependent temperature distribution and the resulting deformation of the machine tool are influenced by a variety of design and thermo-technical parameters. The main spindle of a machine tool is, without any doubt, the major heat source within the machine structure. The object of the scientific investigation presented in this article is the development of an approach to robust compensation of thermo-dependent machine tool deformations due to spindle load in consideration of rough machining. The focus of the work concentrates on the identification of the model with the highest compensation performance. The underlying concept for the compensation of thermo-dependent machine tool deformations is the indirect approach by using the speed and the effective power of the main spindle for the calculation of the Tool Center Point (TCP) displacement. The presented modeling approach requires the knowledge of the TCP displacement in X-, Y- and Z-direction depending on the speed and the effective power of the main spindle. As a tool for modeling the thermo-dependent behavior of a milling machine, a load test rig for repeatable, defined long-term loading of the main spindle has been developed. It simulates the cutting force depending on the spindle speed and the torque and applies load to the main spindle. The spindle speed and the spindle effective power can be taken directly from the numerical control of the machine tool. An important advantage of the presented compensation method is the fact that it does not require any external sensors. The displacement of the TCP has to be measured, but only during modeling. The relationship between the speed/power of the main spindle as a cause and the displacement of the TCP in X-, Y- and Z-direction as an effect can be determined by a transfer function. This paper compares the compensation results depending on the transfer function and identifies the model with the best compensation performance. The validation of the compensation method is executed by using the example of two different speed and power spectra of the main spindle.  相似文献   

11.
This article presents a mechanical cutting force model for multi-tooth cutting processes, where initial position errors in radial and axial direction, eccentricity and edge wear are taken into account. The cutting forces are presented for each individual cutting edge, and in a system of coordinates where one axis is parallel to the cutting speed vector at any instant. The process parameter cutting resistance, Cr is derived from the measured main cutting force FM. Cr should be regarded as a parameter since it is always increasing with decreasing values of theoretical chip thickness h1. A new way of measuring cutting forces in multi-tooth cutting processes is also presented. Eight cutting force components are measured on the tool close to each of the four cutting edges. The aroused signals are filtered, amplified, A/D-converted and put together in a serial stream for transmission through a hollow spindle via a fibre optic cable. The signals are sent from the rotating spindle to the frame of the machine over an air gap with Light Emitting Diodes. They are then demultiplexed, D/A-converted, and stored in a PC-based eight channel oscilloscope. With this measurement equipment it is possible to directly measure the cutting forces acting on each individual cutting edge.  相似文献   

12.
In this report, the behavior of the cutting force measured through the dynamic response of tool–work piece system in ultrasonic vibration cutting was discussed first. Measured cutting force mainly depends on the ratio of net cutting time to a vibration cycle in vibration cutting (tc/T) because the tool–work piece system has much lower natural frequency comparing with the ultrasonic vibration cycle. It was confirmed by the newly proposed cutting experiment using resonated-horn-type work piece, displacement amplitude and stress amplitude at the cutting point vary continuously in this device. It was shown that the measured cutting force varies corresponding to the displacement amplitude. It was also indicated that the measured cutting force does not decrease when the cutting point is on the node of the resonated-horn-type work piece, where the stress amplitude is the maximum but there is no displacement amplitude. It means that there should be the relative intermittent displacement between the tool and the chip in order to decrease the measured cutting force. In addition, the deformation resistance of the work piece material itself does not decrease with ultrasonic vibration of the stress field. Secondly, the significance of the elastic deformation of the tool–work piece system of several microns in ultrasonic intermittent cutting was also indicated from an analytical and experimental point of view. The effect of the elastic behavior on the cutting force becomes relatively large as tc/T becomes small. The above-mentioned characteristics will be helpful to utilize the ultrasonic vibration cutting system more efficiently.  相似文献   

13.
Among many machining condition monitoring systems, a spindle motor power monitoring system is considered as one of the most popular systems for plant floor applications. However, in practice, power signals are mixed with many signal sources relevant to cutting tool, cutting conditions as well as components of a machine tool, which contaminate with each other in feature extraction processes and decrease the monitoring reliability. In this paper, modified blind sources separation (BSS) technique is used to separate those source signals in milling process. A single-channel BSS method based on wavelet transform and independent component analysis (ICA) is developed, and source signals related to a milling cutter and spindle are separated from a single-channel power signal. The experiments with different tool conditions illustrate that the separation strategy is robust and promising for cutting process monitoring.  相似文献   

14.
The quasi-mean resultant force has been proven to be useful on the real-time process control and tool monitoring in milling operations. This paper presents a new way to measure the quasi-mean resultant force using the vibrational displacement signal of spindle. The quasi-mean resultant force can be obtained by subtracting the spindle run-out pattern from the average displacement signal per tooth period, then multiplying a constant, k*. This new approach is illustrated by computational simulations and experimental cutting tests.  相似文献   

15.
This paper presents a method for the condition monitoring of the milling cutting process based upon a combination of two techniques; sweeping filters and tooth rotation energy estimation (TREE). Existing spindle speed and spindle load signals from the machine are used thus avoiding the need for any additional sensors. The sweeping filter technique determines the frequency components of the spindle signal using low cost hardware. The filter's cut off frequency is swept across a range of frequencies and its output is acquired and analysed in real time. The variations of individual tooth energies estimated by the TREE technique in the time domain are used to verify the results. The hybrid approach created is based on the verification of any indicated faults before making a final conclusion about the health of the cutting tool. This provides a robust and reliable tool monitoring system that is able to identify tool breakage in real time during machining operations.  相似文献   

16.
The paper presents a new approach for predicting micro-milling cutting forces using the finite element method (FEM). The trajectory of the tool and the uncut chip thickness for different micro-milling parameters (cutting tool radius, feed rate, spindle angular velocity and number of flutes) are determined and used for predicting the cutting forces in micro-milling. The run-out effect is also taken into account. An orthogonal FE model is developed. A number of FE analyses (FEA) are performed at different uncut chip thicknesses (0–20 μm) and velocities (104.7–4723 mm/s) for AISI 4340 steel. Based on the FE results, the relationship between the cutting forces, uncut chip thickness and cutting velocity has been described by a non-linear equation proposed by the authors. The suggested equation describes the ploughing and shearing dominant cutting forces. The micro-milling cutting forces have been determined by using the predicted forces from the orthogonal cutting FE model and the calculated uncut chip thickness. Different feed rates and spindle angular velocities have been investigated and compared with experimentally obtained results. The predicted and the measured forces are in very good agreement.  相似文献   

17.
Receptance coupling for end mills   总被引:3,自引:0,他引:3  
Identification of chatter free cutting conditions, the chatter stability lobes, requires a measurement of the frequency response function (FRF) of each tool mounted on the spindle. This paper presents a method of assembling known dynamics of the spindle–tool holder with an analytically modeled end mill using the receptance coupling technique. The classical receptance technique is enhanced by proposing a method of identifying the end mill–spindle/tool holder joint dynamics, which include both translational and rotational degrees of freedom. The method requires measurement of FRFs with impact tests applied on the spindle–tool holder assembly and blank calibration cylinders attached to the spindle. The spindle and tool holder characteristics are completely identified from the two experiments, and used for the mathematical prediction of FRF for end mills with arbitrary dimensions. The proposed method is experimentally proven and verified in cutting tests.  相似文献   

18.
This paper presents a general, integrated model of the spindle bearing and machine tool system, consisting of a rotating shaft, tool holder, angular contact ball bearings, housing, and the machine tool mounting. The model allows virtual cutting of a work material with the numerical model of the spindle during the design stage. The proposed model predicts bearing stiffness, mode shapes, frequency response function (FRF), static and dynamic deflections along the cutter and spindle shaft, as well as contact forces on the bearings with simulated cutting forces before physically building and testing the spindles. The proposed models are verified experimentally by conducting comprehensive tests on an instrumented-industrial spindle. The study shows that the accuracy of predicting the performance of the spindles require integrated modeling of all spindle elements and mounting on the machine tool. The operating conditions of the spindle, such as bearing preload, spindle speeds, cutting conditions and work material properties affect the frequency and amplitude of vibrations during machining.  相似文献   

19.
陈璜  林雄萍 《机床与液压》2022,50(16):71-74
针对用于切削力预测的瞬时刚性力模型所需参数较多且依赖初步切削实验的问题,提出一种不需要切削实验的新型切削力预测方法,实现在实际工厂中监测机床铣削加工过程。在斜角切削模型和正交切削理论的基础上,对传统的瞬时刚性力模型进行改进,减少切削力预测所需的切削参数。改进后的模型仅需在铣削操作开始时从测量的主轴电机扭矩得到的剪切角参数,无需任何额外的传感器就可以实现铣削力预测。在所提模型中,刀具跳动的影响可通过每个切削刃处的旋转半径偏差表示,以精确预测切削力。为验证该模型的有效性,进行切削实验。结果表明:切削力的预测值与实测值吻合较好,在实际加工过程中,无需任何实验铣削或任何额外的力传感器就可以准确了解机床加工状态。  相似文献   

20.
Expert spindle design system   总被引:8,自引:0,他引:8  
This paper presents an expert spindle design system strategy which is based on the efficient utilization of past design experience, the laws of machine design, dynamics and metal cutting mechanics. The configuration of the spindle is decided from the specifications of the workpiece material, desired cutting conditions, and most common tools used on the machine tool. The spindle drive mechanism, drive motor, bearing types, and spindle shaft dimensions are selected based on the target applications. The paper provides a set of fuzzy design rules, which lead to an interactive and automatic design of spindle drive configurations. The structural dynamics of the spindle are automatically optimized by distributing the bearings along the spindle shaft. The proposed strategy is to iteratively predict the Frequency Response Function (FRF) of the spindle at the tool tip using the Finite Element Method (FEM) based on the Timoshenko beam theory. The predicted FRF of the spindle is integrated to the chatter vibration stability law, which indicates whether the design would lead to chatter vibration free cutting operation at the desired speed and depth of cut for different flutes of cutters. The arrangement of bearings is optimized using the Sequential Quadratic Programming (SQP) method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号