共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解决实际高光谱解混(HU)中噪声对解混精度的影响和光谱、空间信息利用不足的问题,提出了一种改进的基于光谱距离聚类的群稀疏非负矩阵分解的解混算法。首先,引入了基于最小误差的高光谱信号辨识算法(Hysime),通过计算特征值的方式估计信号矩阵和噪声矩阵;然后,提出了一种简单的基于光谱距离的聚类算法,对多个波段生成的光谱反射率距离值小于某一值的相邻像元进行合并聚类生成空间群结构;最后,在生成的群结构基础上进行稀疏化非负矩阵分解。实验分析表明,对于模拟数据和实际数据而言,该算法都比传统算法产生更小的均方根误差(RMSE)和光谱角距离(SAD),能够产生优于同类算法的解混效果。 相似文献
2.
传统的非平滑约束的非负矩阵分解算法(nsNMF)在处理高光谱数据时,存在对初始值敏感、容易陷入局部最优值等缺陷。为此,提出一种基于粒子群优化(PSO)的nsNMF算法。采用传统nsNMF算法迭代的结果作为初始值,以避免PSO的盲目搜索。通过PSO搜索端元光谱矩阵,利用nsNMF算法更新端元光谱矩阵和丰度矩阵,以缩小搜索空间,降低计算复杂度,避免陷入局部最优。在合成数据集和真实数据集上的实验结果表明,与传统nsNMF算法相比,该算法能获得更好的全局最优解,端元光谱和丰度值更接近真实值。 相似文献
3.
《计算机应用与软件》2017,(12)
基于FAN模型的广义非负矩阵分解是一种非纯像元假设下有效的高光谱图像非线性光谱解混算法。针对基于FAN模型的广义非负矩阵分解算法的快速实现问题,基于CUDA编程模型与存储器模型设计并行优化,对优化后算法的串行与并行部分进行任务分配与线程映射,设计合理的核函数实现各关键步骤。通过真实高光谱数据的光谱解混实验,结果表明CUDA并行优化后的算法相比串行算法,能达到较高的加速比,验证了其有效性。 相似文献
4.
目的 混合像元问题在高光谱遥感图像处理分析中普遍存在,非负矩阵分解的方法被引入到高光谱图像解混中。本文提出结合空间光谱预处理和约束非负矩阵分解的混合像元分解流程。方法 结合空间光谱预处理的约束非负矩阵分解,如最小体积约束、流行约束等,通过加入邻域的空间和光谱信息进行预处理获得更优的预选端元,从而对非负矩阵分解的解混结果进行优化。结果 在5组不同信噪比的模拟数据实验中,空间预处理(SPP)和空间光谱预处理(SSPP)均能够有效提高约束非负矩阵分解(最小体积约束的非负矩阵分解和图正则非负矩阵分解)的解混结果,其中SPP在不同信噪比的情况下都能优化约束非负矩阵分解的结果,而SSPP在低信噪比的情况下,预处理效果更佳。利用美国内华达州Cuprite矿区数据进行真实数据实验,SPP提高了约束非负矩阵分解的解混精度,而SSPP在复杂场景下,解混精度更佳。模拟数据和真实数据的实验均表明,空间光谱预处理能够有效地提高约束非负矩阵分解的解混精度,特别是对于信噪比较低的情况下,融合空间和光谱信息对噪声有很好的鲁棒性。结论 本文对约束非负矩阵分解的解混算法添加空间光谱预处理,利用高光谱遥感数据的空间和光谱信息,优化预选端元,加入空间光谱预处理的非负矩阵解混实验流程,在复杂场景情况下,对噪声具有较好的鲁棒性。 相似文献
5.
目的 高光谱图像混合像元的普遍存在使得传统的分类技术难以准确确定地物空间分布,亚像元定位技术是解决该问题的有效手段。针对连通区域存在孤立点或孤立两点等特例时,通过链码长度求周长最小无法保证最优结果及优化过程计算量大的问题,提出了一种改进的高光谱图像亚像元定位方法。方法 以光谱解混结合二进制粒子群优化构建算法框架,根据光谱解混结果近似估计每个像元对应的亚像元组成,通过分析连通区域存在特例时基于链码长度求周长最小无法保证结果最优的原因,提出修改孤立区域的周长并考虑连通区域个数构造代价函数,最后利用二进制粒子群优化实现亚像元定位。为了减少算法的时间复杂度,根据地物空间分布特点,采用局部分析代替全局分析,提出了新的迭代优化策略。结果 相比直接基于链码长度求周长最小的优化结果,基于改进的目标函数优化后,大部分区域边界更明显,并且没有孤立1点和孤立两点的区域,识别率可以提高2%以上,Kappa系数增加0.05以上,新的优化策略可以使算法运算时间减少近一半。结论 实验结果表明,本文方法能有效提高亚像元定位精度,同时降低时间复杂度。因为高光谱图像中均匀混合区域不同地物的分布空间相关性不强,因此本文方法适用于非均匀混合的高光谱图像的亚像元定位。 相似文献
6.
针对基于非负矩阵分解(NMF)的高光谱解混存在的容易陷入局部极小值和受初始值影响较大的问题,提出一种稀疏和正交约束相结合的NMF的线性解混算法SONMF。首先,从传统的基于NMF的高光谱线性解混方法出发,分析高光谱数据本身的理化特性;然后,结合丰度的稀疏性和端元的独立性两个方面,将稀疏非负矩阵分解(SNMF)和正交非负矩阵分解(ONMF)两种方法结合应用到高光谱解混当中。模拟数据和真实数据实验表明,相比顶点成分分析法(VCA)、SNMF和ONMF这三种参考解混算法,所提算法提高了线性解混的性能;其中,评价指标光谱角距离(SAD)降低了0.012~0.145。SONMF能够结合两种约束条件的优势,弥补传统基于NMF线性解混方法对高光谱数据表达的不足,取得较好的效果。 相似文献
7.
目的 高光谱解混是高光谱遥感数据分析中的热点问题,其难点在于信息不充分导致的问题病态性。基于光谱库的稀疏性解混方法是目前的代表性方法,但是在实际情况中,高光谱数据通常包含高斯、脉冲和死线等噪声,且各波段噪声的强度往往不同,因此常用的稀疏解混方法鲁棒性不够,解混精度有待提高。针对该问题,本文对高光谱图像进行非负稀疏分量分解建模,提出了一种基于非负稀疏分量分析的鲁棒解混方法。方法 首先综合考虑真实高光谱数据的混合噪声及其各波段噪声强度不同的统计特性,在最大后验概率框架下建立非负矩阵稀疏分量分解模型,然后采用l1,1范数刻画噪声的稀疏性,l2,0范数刻画丰度的全局行稀疏性,全变分(total variation,TV)正则项刻画像元的局部同质性和分段平滑性,建立基于非负稀疏分量分析的高光谱鲁棒解混优化模型,最后采用交替方向乘子法(alternating direction method of multipliers,ADMM)设计高效迭代算法。结果 在2组模拟数据集上的实验结果表明,相比于5种对比方法,提出方法在信号与重建误差比(signal to... 相似文献
8.
回顾了粒子群算法的基本原理,分析了端元提取算法的两种技术途径。利用粒子群优化的原理,结合凸面几何学理论和线性光谱混合模型,设计了一种粒子群优化端元提取算法,并设计了算法的快速实现方法。该算法不需要假设影像中存在纯像元,同时保持了端元光谱的形状。利用模拟数据和AVIRIS影像对该算法、SGA算法和NMF算法进行实验对比分析,实验结果证明该算法的端元提取精度优于其他二者。 相似文献
9.
该文针对相机标定过程中因优化算法所引起的精度不足、稳定性差、易陷入局部最优的问题,提出将樽海鞘优化算法和自适应差分进化算法相结合的相机标定优化算法。该混合算法利用樽海鞘优化算法提高精度,利用自适应差分进化算法增强局部搜索能力,在不同迭代阶段对适应度函数采用分段优化方式,实现平衡局部和全局搜索能力。实验采用每格50 mm×50 mm标准的棋盘格作为标定板,选取15张不同角度的标定图片,图片有效像素为4608 pixe×l3456 pixel,分别利用张正友标定法、樽海鞘算法以及本文提出的樽海鞘-自适应差分进化混合算法进行相机内参的优化。实验结果表明该文提出的混合算法比传统标定方法重投影误差更小,标定精度更高。 相似文献
10.
樽海鞘群算法是一种新型的群智能优化算法.与其他智能优化算法相比,樽海鞘群算法的优化求解策略仍有待改进,以进一步提高该算法的求解精度和寻优效率.本文提出一种基于衰减因子和动态学习的改进樽海鞘群算法,通过在领导者更新阶段添加衰减因子,提高算法的局部开发能力,在跟随者更新阶段引入动态学习策略,提高算法的全局搜索能力.本文对16个测试函数进行实验,将提出的改进算法与其他智能优化算法比较,实验结果表明,本文提出的改进算法在收敛精度和收敛速度方面有较大提升,具有良好的优化性能. 相似文献
11.
针对高光谱图像解混问题进行研究,发现传统解混算法在保持端元数目不变的情况下,得到的解混精度不高。为此,基于人工神经网络(ANN)提出一种估计单像素点中端元数目和类别的解混算法。首先利用人工神经网络对遥感图像中各个像素的端元数目和类别进行估计;之后依据估计结果确定解混算法的目标函数,并引入改进的差分搜索算法对目标函数进行优化求解;最终获取地物丰度和待求参数,实现高光谱图像的解混。仿真数据和真实遥感数据实验表明,与现有的解混算法相比,所提解混算法具有更高的解混性能,更加符合实际场景的情况。 相似文献
12.
13.
14.
由于光谱分辨率和空间分辨率的制约以及物理条件的限制,高光谱数据具有很高的光谱分辨率而其空间分辨率却很低。因此,一般高光谱数据的空间分辨率往往低于仅有几个波段的多光谱数据的空间分辨率。高光谱数据和多光谱数据的融合可以得到同时具有高空间分辨率和高光谱分辨率的数据,进而应用于更高空间分辨率下地物的识别和分类。非负矩阵分解(Nonnegative Matrix Factorization)算法用于实现低空间分辨率高光谱数据和高空间分辨率多光谱数据的融合。首先利用顶点成分分析法VCA(Vertex Component Analysis)分解高光谱数据,得到初始的端元波谱矩阵和端元丰度矩阵;然后用非负矩阵分解算法交替地对高光谱数据和多光谱数据进行分解,得到高光谱分辨率的端元波谱矩阵和高空间分辨率的丰度矩阵;最后两个矩阵相乘得到高空间分辨率和高光谱分辨率的融合结果。在每一步非负矩阵分解过程中,数据之间的传感器观测模型用于分解矩阵的初始化。AVIRIS和HJ-1A数据实验结果分析表明:非负矩阵分解算法有效提高了高光谱数据的所有波长范围内波段数据的空间分辨率,而高精度的融合结果可用于地物的目标识别和分类。 相似文献
15.
针对标准樽海鞘群算法收敛精度低、收敛速度慢的问题,提出一种基于自适应惯性权重的樽海鞘群算法(AIWSSA).首先,在追随者位置更新公式中引入惯性权重因子评价个体之间的影响程度;然后,结合种群成功率与非线性递减函数对惯性权重因子进行自适应调整,使算法的全局和局部搜索能力得到更好地平衡;最后,为防止算法陷入局部最优,引入差分变异思想对非最优个体进行变异.对12个基准测试函数进行求解,实验结果表明:AIWSSA具有较高的收敛精度、收敛速度和鲁棒性; Wilcoxon统计检验结果表明:与标准樽海鞘群算法、改进的樽海鞘群算法、其他群体智能算法相比, AIWSSA表现出较好的性能.通过将其应用于两种带约束的工程设计问题,验证了AIWSSA的有效性. 相似文献
16.
针对蝴蝶优化算法(BOA)收敛速度较慢和过早收敛到局部解的问题,提出一种基于邻域重心反向学习的混合樽海鞘群蝴蝶优化算法(HSSBOA)。首先,将樽海鞘群算法(SSA)引入BOA中,使算法快速处理局部搜索阶段,并更新种群位置,从而更有效地完成寻优过程,避免算法陷入局部最优;然后,引入邻域重心反向学习以便更好地帮助算法在邻域内进行小范围精确搜索,从而提高算法的精度;最后,引入动态切换概率以改善搜索中全局与局部的比重,从而加快算法的搜索速度。选取10个标准检测函数进行测试,将HSSBOA与几个先进的优化算法从收敛精度、高维度数据、收敛速度、Wilcoxon秩和检验和平均绝对误差(MAE)五个方面进行对比分析。研究结果表明,相较于其他算法,HSSBOA取得了更优的结果。消融实验进一步验证了各项改进均为正向作用。实例问题上的表现表明相较于其他方法,在求解有约束的复杂问题时,HSSBOA能够更有效地搜索出最优解。可见HSSBOA在寻优精度、稳定性和收敛效率等方面取得了一定的优势,并且能够求解复杂的现实问题。 相似文献
17.
针对樽海鞘群算法(SSA)收敛速度慢和易陷入局部最优的问题,提出了一种融合信息反馈共享与蜉蝣搜索机制的改进樽海鞘群算法。使用Piecewise映射的方法进行种群初始化,使初始樽海鞘种群更均匀的覆盖可行域空间;采用信息共享机制,提出辅助领导者策略,改进领导者位置更新公式,增强全局搜索能力;利用进化学说以及正负反馈调节的思想,通过变异操作和自然选择原则选取更优领导者,从而提高搜索精度;最后,提出蜉蝣搜索机制,选取蜉蝣算法的交配公式,优化追随者位置迭代公式,使算法在后期更快收敛。通过在12个基准测试函数的多个维度以及17个CEC测试函数的实验,证明了改进樽海鞘群算法的综合性能,并通过消融实验验证了改进策略的有效性,实验结果表明,改进算法在收敛速度以及搜索精度上具有明显的优势。 相似文献
18.
19.
基于非负矩阵分解(Nonnegative Matrix Factorization, NMF)的高光谱解混(Hyperspectral Unmixing,HU)方法引起了大家的关注,因为可以将一个非负高光谱图像(Hyperspectral Imagery, HSI)数据矩阵分解为两个非负矩阵的乘积,分别对应于端元矩阵和丰度系数矩阵。目前,图约束的NMF算法已经被证明对高光谱解混是有效的,因为它们可以捕获HSI的几何特性。为了挖掘数据在混合过程中的几何结构和稀疏性,提出了一种稀疏的Hessian图正则化NMF(SHGNMF)算法。SHGNMF算法是将丰度矩阵的L1/2正则化器和Hessian图正则化项都添加到每个NMF模型中,同时采用乘法更新规则。最后用模拟数据和真实数据进行实验,验证了所提出的SHGNMF算法相对于其他NMF算法的优越性。 相似文献
20.
目的 基于非负矩阵分解的高光谱图像无监督解混算法普遍存在着目标函数对噪声敏感、在低信噪比条件下端元提取和丰度估计性能不佳的缺点。因此,提出一种基于稳健非负矩阵分解的高光谱图像混合像元分解算法。方法 首先在传统基于非负矩阵分解的解混算法基础上,对目标函数加以改进,用更加稳健的L1范数作为重建误差项,提高算法对噪声的适应能力,得到新的无监督解混目标函数。针对新目标函数的非凸特性,利用梯度下降法对端元矩阵和丰度矩阵交替迭代求解,进而完成优化求解,得到端元和丰度估计值。结果 分别利用模拟和真实高光谱数据,对算法性能进行定性和定量分析。在模拟数据集中,将本文算法与具有代表性的5种无监督解混算法进行比较,相比于对比算法中最优者,本文算法在典型信噪比20 dB下,光谱角距离(spectral angle distance,SAD)增大了10.5%,信号重构误差(signal to reconstruction error,SRE)减小了9.3%;在真实数据集中,利用光谱库中的地物光谱特征验证本文算法端元提取质量,并利用真实地物分布定性分析丰度估计结果。结论 提出的基于稳健非负矩阵分解的高光谱无监督解混算法,在低信噪比条件下,能够获得较好的端元提取和丰度估计精度,解混效果更好。 相似文献