首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用Gleeble-3500热模拟压缩试验机对15vol%SiC_P/Al复合材料进行热模拟试验研究,试验变形温度为623~773 K,应变速率为0.001~10 s~(-1)。从流变应力曲线可以发现,存在明显的应变速率强化和高温软化现象。在流变应力曲线基础上,基于Prasad准则建立了该材料的热加工图,确定出适合SiC_P/Al复合材料加工的区域为变形温度720~773 K,应变速率0.001~0.8 s~(-1)。  相似文献   

2.
30%SiCp/2024Al复合材料动态再结晶临界条件   总被引:1,自引:0,他引:1  
采用Gleeble-1500D热模拟试验机对30%SiCp/Al复合材料进行热模拟试验,其变形温度为623~773K、应变速率为0.01~10s-1。采用加工硬化率法对应力-应变数据进行处理,结合lnθ-ε曲线的拐点和(-(lnθ)/ε)-ε)曲线最小值的判据,研究了该复合材料动态再结晶临界条件。结果表明,30%SiCp/2024Al复合材料的真应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力(σp)随变形温度降低或应变速率升高而增加;该材料的lnθ-ε曲线出现拐点,(-(lnθ)/ε)-ε)曲线出现最小值;临界应变(εc)随变形温度升高与应变速率降低而减小,且临界应变与峰值应变(εp)之间具有相关性,即εc=0.563εp;临界应变与Zener-Hollomon参数(Z)之间的函数关系为εc=7.96×10-3Z0.038。  相似文献   

3.
采用电阻点焊方法对55% SiCp/A356Al复合材料进行焊接,焊接方案设计为试样无夹层直接焊接和中间夹铝箔焊接。对不同方案下获得的点焊接头微观组织、抗剪强度、显微硬度、熔核直径及界面反应情况进行了分析和比较;建立了高体积分数55% SiCp/A356Al复合材料界面连接模型,讨论了接头强度与界面模型的联系。结果表明,在优化的工艺参数下,接头成形良好,无明显缺陷,点焊接头熔核区SiC颗粒分布均匀,未出现界面反应;试样中间夹铝箔焊接后,界面仅发生强连接和亚弱连接反应,接头强度提高,平均抗剪力2 165.6 N,平均熔核直径9.5 mm,显微硬度与微观组织分布相符合,并且与母材硬度无明显差异。  相似文献   

4.
选用粒径为12 μm的SiC颗粒和19 μm的2024铝合金粉末,采用热等静压工艺制备体积分数为55%的SiCp/2024Al复合材料,研究固溶时效处理对SiCp/2024Al复合材料微观组织和力学性能的影响。结果表明,真空热等静压法制备的复合材料组织致密,SiC颗粒与铝合金结合良好。时效过程中SiCp/2024Al复合材料呈现出双峰时效行为,与铝合金相比,复合材料提前达到峰时效状态,此时基体中主要强化相为θ″相与S″相。与烧结态相比,复合材料硬度从255 HBW提高到281 HBW,抗弯强度从633 MPa提高到747 MPa。  相似文献   

5.
为探索金刚石刀具(PCD)和涂层硬质合金刀具加工45%SiCp/Al复合材料时的刀具磨损、切削力、表面粗糙度的变化规律,对45%SiCp/Al复合材料进行了切削试验。分别使用三向测力仪对切削力进行测量,光学显微镜对刀具磨损进行了观察和测量。分析了PCD和涂层硬质合金刀具磨损的演变过程及刀具磨损对切削力、表面粗糙度的影响规律。研究结果表明,对于PCD刀具,前刀面磨损形式依次为晶粒脱落、磨粒磨损、粘结磨损并存在崩刃。后刀面的主要磨损形式为磨粒磨损,并伴有积屑瘤的产生。硬质合金刀具前刀面磨损形式依次为涂层脱落、磨粒磨损,后刀面出现严重磨粒磨损并且出现粘附现象,用PCD刀具切削45%SiCp/Al复合材料,切削力随积屑瘤增长或脱落呈周期性变化。用涂层硬质合金刀具切削时,主切削力是PCD刀具的两倍。对于PCD刀具,表面粗糙度也随积屑瘤呈周期性变化。涂层硬质合金刀具切削45%SiCp/Al复合材料的表面粗糙度大于PCD刀具,并且随切削距离增加急剧增长。  相似文献   

6.
采用真空热压烧结法制备30%SiCp/2024Al复合材料以改善2024铝合金的阻尼性能,通过扫描电镜(SEM)、X射线衍射(XRD)、能谱仪(EDS)、高分辨透射电镜(HRTEM)等对复合材料热处理前后的微观组织进行了表征。采用动态热机械分析仪(DMA)研究其热处理前后的阻尼特性。结果表明:热压烧结制备的复合材料界面结合良好,无界面反应,存在许多粗大析出相颗粒,经热处理之后,纳米析出相弥散分布在基体中,可提高复合材料的阻尼性能。30%SiCp/Al复合材料的阻尼性能随温度和应变量的升高而增大,储能模量随温度和应变量的升高而降低。热处理态复合材料中大量弥散的纳米析出相颗粒增加了界面的数量,使界面阻尼增加。复合材料的阻尼机制为位错阻尼、晶界阻尼和界面阻尼。晶界阻尼对温度敏感,大量的界面、晶界可以明显改善复合材料的高温(大于250℃)储能模量,从而改善30%SiCp/Al复合材料的阻尼性能。  相似文献   

7.
对SiC颗粒增强6061铝基复合材料在一定的应变速率(0.0001~0.1 s-1)和一定的变形温度(300~450℃)下进行热压缩试验,对热变形行为进行分析。结果表明:复合材料流变应力随着应变速率的增大而增大,随着变形温度的升高而降低,呈现出正应变速率敏感性。复合材料的热流变行为可以用双曲正弦形式的本构方程来描述,并通过线性回归分析,计算出复合材料的应变敏感指数n为8.0678,变形激活能Q为366.27 kJ/mol,其变形机制为晶格扩散控制的弥散强化机制。同时,观察了复合材料微观变形组织,可以看出热压缩后晶粒明显被拉长,颗粒在变形过程中重新排布,但是在高温低应变速率下,因动态再结晶的发生,这种现象不是很明显。  相似文献   

8.
采用机械球磨的方法制备了Al-Si-xSiC(x为体积分数)复合钎料,采用复合钎料实现了70%SiCp/Al复合材料的加压钎焊连接. 利用SEM和EDS确定了钎缝是由α-Al,Si,SiC,Al2O3等相组成. 结果表明,在压力作用下SiC颗粒被固定在钎缝区而使得钎缝区的组织类似于复合材料,钎缝中一定的SiC颗粒可以缓解母材与金属钎料之间的热膨胀系数之差,从而减小了焊接残余应力,可以提高接头的强度,而钎焊施加一定的压力则可促进钎料与SiC颗粒的润湿性. 工艺适当时,接头最高强度达到125.7 MPa.  相似文献   

9.
采用Gleeble-3800热模拟试验机对0.2%Sc-2%TiB2/6061复合材料进行热压缩实验,研究了该材料在变形温度为623~773 K、应变速率为0.001~1 s-1条件下的热变形行为,基于应力应变曲线,构建了材料的本构方程及热加工图。结果表明:0.2%Sc-2%TiB2/6061复合材料的流变应力随变形温度的升高和应变速率的降低而降低,材料的热变形激活能为227.751 kJ/mol;在热压缩过程中,失稳区主要出现在高应变速率区域(663~773 K,0.132~1 s-1)及低温区域(623~655 K,0.001~0.040 s-1),最优的热加工区域为变形温度703~773 K、应变速率0.017~0.107 s-1。热变形过程中该材料的软化机制主要为动态回复。  相似文献   

10.
在Gleeble 1500D热模拟机上对Al2O3/Cu-WC复合材料进行热压缩实验,研究变形温度为350-750℃、应变速率为0.01-5 s 1条件下的热变形行为。结果表明:Al2O3/Cu-WC复合材料高温流变应力—应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,其激活能为229.17 kJ/mol。根据材料动态模型,计算并建立Al2O3/Cu-WC复合材料的热加工图,据此确定热变形流变失稳区及热变形过程的最佳工艺参数,其热加工温度为650-750℃,应变速率为0.1-1 s 1。  相似文献   

11.
12.
在Gleeble~(-1)500D热模拟试验机上对O态6082铝合金进行了热压缩实验,研究了该合金在变形温度300~500℃,应变速率0.01~10 s~(-1)条件下的热变形行为和组织演化;基于Arrhenius双曲正弦本构关系建立了6082铝合金的本构方程;基于动态材料模型(DDM)和Murty法建立了热加工图,并结合微观组织进行验证。研究结果表明:6082铝合金为正应变速率敏感材料,峰值应力随温度的降低和应变速率的升高而升高,热变形过程中的主要软化机制为动态回复,在较高温较低应变速率(500℃,0.1 s~(-1))时,该合金发生动态再结晶。计算得到该合金的热激活能为171.1539 k J·mol~(-1),最佳热加工工艺参数区间为:450~500℃,0.2~0.5 s~(-1)。  相似文献   

13.
采用高温等温压缩试验,对Cu?Ni?Si?P合金在应变速率0.01~5?1、变形温度600~800°C条件下的高温变形行为进行了研究,得出了该合金热压缩变形时的热变形激活能Q和本构方程。根据实验数据与热加工工艺参数构建了该合金的热加工图,利用热加工图对该合金在热变形过程中的热变形工艺参数进行了优化,并利用热加工图分析了该合金的高温组织变化。热变形过程中Cu?Ni?Si?P合金的流变应力随着变形温度的升高而降低,随着应变速率的提高而增大,该合金的动态再结晶温度为700°C。该合金热变形过程中的热变形激活能Q为485.6 kJ/mol。通过分析合金在应变为0.3和0.5时的热加工图得出该合金的安全加工区域的温度为750~800°C,应变速率为0.01~0.1 s?1。通过合金热变形过程中高温显微组织的观察,其组织规律很好地符合热加工图所预测的组织规律。  相似文献   

14.
采用试验研究与数值模拟相结合的方法,对SiC_P/Al复合材料的变形损伤进行研究,基于ABAQUS软件的二次开发功能对材料变形过程中的应力状态参数(应力三轴度、柔度系数和Lode参数)进行可视化输出,分析其微观损伤特征。通过试验发现复合材料中轴比较大的颗粒更易断裂,而轴比较小的颗粒倾向于发生界面脱粘,这些是形成裂纹的起源。模拟后发现在颗粒尖角区域及颗粒的聚集处,应力应变通常达到最大值,出现明显应力集中,而且在这些区域的应力状态参数往往也达到峰值,易于微裂纹萌生和扩展。  相似文献   

15.
本文用热压试验法研究了2124Al-20VO1.%SiC颗粒增强金属基复合材料(MMC)在300℃到550℃温度区间且应变速率在0.001S~1到1S~(-1)范围的热加工条件下的基本流变行为。工艺图描绘了由公式2m/(m+1)(式中m表示流变应力下的应变速率敏感性)得到的功率耗散效率随温度和应  相似文献   

16.
采用Gleeble-1500热模拟机进行热压缩实验,研究变形温度为300~450℃、应变速率为0.01~10s-1时TiB2/7055Al原位合成铝基复合材料的热变形行为。结果表明:热变形过程流变应力可用双曲正弦本构方程来描述,平均变形激活能为158.3kJ/mol,根据材料动态模型,计算并分析TiB2/7055Al的加工图。利用加工图确定热变形的流变失稳区,获得试验参数范围内的热变形过程最佳工艺参数,其热加工温度范围在430~450℃,应变速率范围为10~3.16s-1和0.032~0.01s-1的两个区域。  相似文献   

17.
采用Gleeble-3500热模拟试验机研究了微碳钢在700~1100℃、0.01~10 s-1条件下的热变形行为。确定了其在铁素体区和奥氏体区的热变形方程。建立了微碳钢在不同应变量下的热加工图(Processing Map)。结果表明,在铁素体区和奥氏体区,试验钢的峰值应力大小基本相当;试验钢在铁素体区和奥氏体区的热变形激活能分别为302 kJ/mol和353 kJ/mol;不同真应变下的热加工图相似,当变形温度为875℃,应变速率为0.01 s-1时,能量消耗效率达到最大值为0.5。  相似文献   

18.
通过真空熔炼制备了Cu-1Ti-1Ni-0.1Mg合金,采用Gleeble-1500D数控动态-力学模拟试验机,在0.001~10 s-1应变速率和550~950℃变形温度下,对Cu-1Ti-1Ni-0.1Mg合金进行了热变形试验。在流变应力的基础上得到了合金的本构方程,绘制了其热加工图,分析了合金的微观组织演变和析出相类型。结果表明:Cu-1Ti-1Ni-0.1Mg合金的峰值应力随着变形温度的降低和应变速率的增加而增大。变形温度的升高对动态再结晶有促进作用,合金的主要析出相为CuNi2Ti。Cu-1Ti-1Ni-0.1Mg合金的最佳热加工区域为应变速率0.001~0.15 s-1,变形温度850~950℃。  相似文献   

19.
6013铝合金的热变形行为及热加工图   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟实验机,分析6013铝合金在变形温度613~773 K、应变速率10-3~10 s-1和工程变形量10%~60%条件下的平面热压缩变形流变应力演化规律,求解热变形本构方程,建立热加工图,探讨其热变形行为机理。结果表明,6013铝合金的流变软化机制以动态回复为主;采用包含关于变形温度函数的幂函数本构方程可较好的预测其流变行为,与实测值的平均相对误差仅为6.631%;确定了单道次大应变热轧成型最佳工艺参数区间:673 KT773 K且5×10-3s-1ε10-1s-1和多道次热轧最佳工艺参数区间:633 KT733 K且10-1s-1ε1 s-1。  相似文献   

20.
为研究不锈钢和低合金高强钢双金属的高温变形行为,对316L/Q420双金属进行了温度为950~1150℃、应变速率为0.01~10 s-1、最大变形量为50%的单向热压缩试验,通过观察试验结果,研究了该双金属的热变形行为,进而构建了基于Z参数的Arrhenius本构方程,并应用动态材料模型和Prasad失稳判据绘制了应变分别为0.1、0.3、0.5和0.7时的热加工图。结果表明,316L/Q420双金属热变形具有典型的动态再结晶型特征,流变应力随温度的升高和应变速率的降低而减小;根据所建本构方程得到的预测应力与试验值之间有良好的线性相关性。对应热加工图,综合分析了碳钢侧微观组织状态和脱碳层厚度,确定了最优热加工工艺窗口为:变形温度为1110~1150℃,应变速率为1.284~10 s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号