首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在稀土镁合金专用熔剂覆盖和氩气保护下制备了Mg-7Gd-3Y、Mg-7Gd-3Y-0.5Zr两种合金。采用光学显微镜、X射线衍射、室温力学测试对合金的显微组织与力学性能进行了分析,研究了Zr元素对合金晶粒大小及铸态力学性能的影响。结果表明,Zr可以极大地细化Mg-7Gd-3Y合金的晶粒;Zr元素的添加,使合金铸态下的抗拉强度和伸长率均得到了较大提高。  相似文献   

2.
设计了新型Mg-6Gd-3Y-2Zn-0.5Zr镁合金,并用光学显微镜、扫描电镜及拉伸试验机对合金铸态、均匀化态及挤压态的显微组织特征和力学性能进行了研究。结果表明,铸态Mg-6Gd-3Y-2Zn-0.5Zr合金组织主要由α-Mg基体和沿晶界分布的块状长周期堆垛有序结构相组成,均匀化处理(450℃×16h)促使细小层片状的长周期堆垛有序结构相由晶界向晶内生长。挤压态Mg-6Gd-3Y-2Zn-0.5Zr合金在200℃下时效处理,无明显时效硬化现象,但挤压态合金具有优良的强韧性能,室温抗拉强度、屈服强度和伸长率分别为335MPa、276MPa和17%。  相似文献   

3.
通过组织观察、拉伸试验和断口分析,研究了Mg-12Gd-2Y-(0,0.5,1.0,1.5)Sm-0.5Zr合金的显微组织和20~300℃下的力学性能。结果表明,随着Sm含量的增加,合金晶粒细化,屈服强度及高温抗拉强度显著提高。同时,随着温度的升高,合金的抗拉强度具有反常的温度效应。  相似文献   

4.
通过在Mg-10Gd-2Y-0.5Zr合金中添加Zn,采用SEM、XRD及万能拉伸试验机,研究了Zn添加对其铸态组织和力学性能的影响。结果表明,Mg-10Gd-2Y-0.5Zr合金的铸态组织主要由α-Mg、Mg5(Gd,Y)和Mg24(Y,Gd)5相组成,而添加质量分数为0.5%~1.5%的Zn后,合金的铸态组织主要由α-Mg、Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5及Mg12(Gd,Y)Zn相组成。添加0.5%的Zn后,合金的室温力学性能明显提高,当Zn含量高于1.0%后,镁合金的室温力学性能开始逐步降低。当Zn含量为0.5%时,合金具有较佳的综合力学性能,其抗拉强度、屈服强度和伸长率分别为197 MPa、160 MPa和4.37%。Zn对Mg-10Gd-2Y-0.5Zr合金铸态力学性能的影响与其铸态组织中Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12(Gd,Y)Zn第二相及其数量有关。  相似文献   

5.
6.
利用DSC、OM、SEM、EDS和力学性能测试研究Mg-11Gd-3.6Y-2Zn-0.6Zr(质量分数,%)合金的形变组织和变形态合金分别在T4、T5、T6处理下的组织和力学性能的变化。结果表明:T6处理对合金综合力学性能的改善更有利。T6处理时,随固溶温度的增加,合金的综合力学性能呈现先增大后减小的趋势,其中,在(430℃, 8h)+(225℃, 16 h)时,抗拉、屈服强度和伸长率均表现良好,分别为397 MPa、300 MPa和12%,强度比挤压态分别提高了14.9%和28.8%,伸长率有所下降。T6处理的固溶温度过高时,尽管组织更加均匀,但是由于层片状和块状LPSO相的减少和晶粒长大,强度下降严重。  相似文献   

7.
王峰  王志  林立  刘正 《铸造》2009,58(10)
在冷室压铸机上制备了Mg-6Gd-3Y-0.5Zr(GW63K)、Mg-8Gd-3Y-0.5Zr(GW83K)和Mg-6Gd-3Y-0.3Ca-0.5Zr(GWC630K)合金.通过光学显微镜、扫描电镜、X射线衍射及力学性能测试等研究了Ca、Gd对GW63K合金组织及力学性能的影响.结果表明:在GW63K合金基础上,添加Ca或Gd均可以使合金组织得到细化,并使得晶界上稀土相的数量明显增加.Ca主要溶于基体中,使合金中Gd、Y稀土元素更多地溶入基体,并使稀土相以短棒状或粒状分布于晶界.Gd主要分布于晶界上的稀土相中.Ca的加入有利于提高合金室温拉伸力学性能,而Gd的加入更有助于提高合金的高温强度.  相似文献   

8.
热处理对压铸Mg-8Gd-3Y-0.5Zr合金组织性能的影响   总被引:1,自引:0,他引:1  
采用气体保护法制备Mg-8Gd-3Y-0.5Zr(GW83K)合金,并冷模压铸成拉伸试样。通过光学显微镜、扫描电镜观察及力学性能测试等分析合金压铸态和不同热处理状态下的显微组织及力学性能。结果表明:冷模压铸GW83K合金经热处理后,其力学性能较压铸态均有所提高,尤其是经低温短时固溶处理(T4)后的合金,其晶粒度变化不大,组织比较均匀,片层状的共晶体消失,第二相以不连续的棒状或粒状分布于晶界处。GW83K-T4合金的室温拉伸性能可达到σb=261.7MPa,σs=240.8MPa,δ5=6.0%,比压铸态合金分别提高了21%,28.4%和30.4%,且该合金具有较好高温力学性能。  相似文献   

9.
10.
采用光学显微镜、扫描电镜、X射线衍射仪、电子拉伸实验机、布氏硬度计等研究了铸态Mg-5Y-3Sm-xHo-0.5Zr(x=0,2,4,6)合金的组织和力学性能。结果表明:铸态Mg-5Y-3Sm-0.5Zr合金主要由α-Mg和大部分位于晶界的Mg24Y5和Mg41Sm5第二相组成。添加Ho后,在晶界处出现了Mg24Ho5新相,Ho的含量高低对合金相组成没有影响。随着Ho含量的不断提高,析出的第二相逐渐增多,晶粒尺寸逐渐减小。当Ho含量为4%时,该铸态合金的综合力学性能最好,抗拉强度、屈服强度、硬度和伸长率分别为193 MPa、170 MPa、72.8 HBW和4.15%。  相似文献   

11.
研究了新型铸造镁合金Mg-3.0Nd-1.5Gd-0.25Zn-0.45Zr的组织和力学性能。研究表明,试验合金的铸态组织为近等轴晶,主要由α-Mg基体和晶界处的(α-Mg+Mg12Nd)共晶组成。试验确定了固溶试验合金的较优时效处理工艺。试验合金经T6热处理后,室温屈服强度较ZM6合金显著提高。同时,试验合金的高温瞬时抗拉强度、屈服强度以及抗蠕变性能均显著优于ZM6合金。  相似文献   

12.
Mg-5.0Y-3.0Nd-0.5Zr合金铸态组织和力学性能研究   总被引:1,自引:0,他引:1  
对Mg-5.0Y-3.0Nd-0.5Zr镁合金进行熔铸和不同温度的均匀化退火,测试该合金的室温力学性能。并采用金相显微镜、扫描电镜等观察铸态和均匀化退火态组织。结果表明,添加Nd和Y能使镁合金的铸态组织得到细化,Nd和Y分别以Mg41Nd5和Mg24Y5化合物形式存在,均匀化退火后,试验合金抗拉强度和伸长率得到提高。其中450℃的均匀化退火效果最好,合金的抗拉强度比铸态时的提高了24.5%,伸长率提高了116.7%。  相似文献   

13.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱分析仪以及拉伸试验机,研究了不同热处理对Mg-9Gd-4Y-1Zn-0.5Zr合金组织和性能的影响。结果表明:不论是铸态、固溶态,还是时效态,合金组织都主要由α-Mg基体以及稀土化合物Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12Zn(Gd,Y)组成;但铸态下合金中第二相主要为Mg5(Gd,Y,Zn),在晶内呈平行的流线状排列,晶粒粗大。通过固溶时效处理,Mg12Zn(Gd,Y)相在晶界处析出并向晶内生长,成为合金的主要强化相,其强化方式主要为固溶强化和时效强化。室温下,铸态合金抗拉强度为138 MPa,伸长率为2.16%,时效态合金抗拉强度为223 MPa,伸长率为3.94%,合金力学性能得到明显提升。  相似文献   

14.
研究了合金元素对Mg-12Gd-2Y-1.5Sm-0.5Zr合金显微组织和力学性能的影响.结果表明,该合金晶粒组织细小,少量Y、Sm和大量Gd固溶在镁基体里,同时有少量MgGd3、Mg24Y5和Mg41Sm5相析出;合金在室温、200、250℃下的抗拉强度分别为258、304、330 MPa;断裂为脆性断裂,与合金的低伸长率相对应.  相似文献   

15.
采用金相显微分析、X射线衍射、扫描电镜以及显微硬度测试等方法,研究了稀土元素Ho对Mg-3Zn-0.6Zr合金显微组织及力学性能的影响.结果表明,Mg-3Zn-xHo-0.6Zr(x=3,5,7)合金系组织由α-Mg基体、Mg3HoZn3相,以及少量的Mg24Ho5相组成.随着Ho含量的增加,Mg3HoZn3相含量增多,起到强化晶界作用.由于Mg3HoZn3相硬而脆,当Ho含量(质量分数)超过3%时,Mg3Ho2Zn3相使合金硬度提高的同时抗拉强度、屈服强度以及伸长率都有不同程度的降低.  相似文献   

16.
采用光学显微镜、X射线衍射等研究了均匀化退火工艺对Mg-9Gd-3Y-0.5Zr镁合金组织和性能的影响.结果表明,均匀化退火能有效消除枝晶偏析,改善材料的组织和力学性能;退火温度对均匀化起主要作用.确定了480℃×8h均匀化退火工艺为铸态Mg-9Gd-3Y-0.5Zr镁合金的最佳处理工艺.  相似文献   

17.
18.
稀土Y对Mg-2.0Zn-0.3Zr镁合金铸态组织和力学性能的影响   总被引:2,自引:0,他引:2  
通过在Mg-2.0Zn-0.3Zr镁合金中添加不同含量的稀土元素Y,研究Y元素及其含量对合金组织和力学性能的影响及机制。结果表明:当Y含量从0.9%增加到1.9%(质量分数,下同)时,组织明显细化,晶间化合物呈连续细网状;当Y含量达到3.7%时,晶间化合物呈不连续的粗网状。当Y从1.9%增加到5.8%时,合金强度逐步提高。Y含量为0.9%时,Y的细化作用及适当的W-相含量对塑性有利,延伸率达到最大值24.8%;Y含量为3.7%时,W-相的数量因X-相的出现而减少,晶间化合物变为不连续网状分布,对塑性有利,合金综合力学性能最佳,抗拉强度为232MPa,屈服强度为124MPa,延伸率为23.5%。添加Y后的Mg-2.0Zn-0.3Zr合金流变应力和挤压变形抗力提高,但可通过420℃,12h热处理和热变形温度提至450℃,改善合金的热成型性并获得更高的综合力学性能。  相似文献   

19.
采用金相分析、SEM、硬度试验和拉伸试验等方法分析和测试砂型铸造Mg-10Gd-3Y-0.5Zr镁合金在T6态(固溶后空冷然后时效)下的显微组织和室温力学性能,讨论该合金的断裂机理。结果表明,砂铸Mg-10Gd-3Y-0.5Zr合金在225°C和250°C时效下的最优T6热处理工艺分别为(525°C,12 h+225°C,14 h)和(525°C,12 h+250°C,12 h)。峰时效下T6态Mg-10Gd-3Y-0.5Zr合金主要由α-Mg+γ+β′相组成,2种峰时效热处理工艺下合金的抗拉强度、屈服强度和伸长率分别为339.9 MPa、251.6 MPa、1.5%及359.6 MPa、247.3 MPa、2.7%。在不同热处理工艺下Mg–10Gd–3Y–0.5Zr合金断裂的类型不同,峰时效态合金的断裂方式为穿晶准解理断裂。  相似文献   

20.
通过SF6+CO2气体保护,在大气环境下制备了Mg-12Gd-2Y-(0.5Sm,0.5Sb)-0.5Zr镁合金,采用OM、SEM、XRD和TEM等手段研究了20~300℃下时效态合金的显微组织和力学性能。结果表明:随Sm、Sb的加入,试验合金晶粒细化,合金屈服强度提高。随实验温度升高,屈服强度略微降低,抗拉强度提高。该合金具有抗拉强度的温度效应。断口分析表明,合金具有沿晶断裂+局部解理断裂的混合断口特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号