首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为减小护巷煤柱宽度,提高盘区采出率,在分析受采动影响的203工作面回采巷道矿压显现特征的基础上,针对浅埋深巷道矿压显现不明显的实际情况,通过理论计算,得出隆德矿2~#煤层合理的护巷煤柱宽度为8.3~12.2 m;采用FLAC3D数值模拟分析了护巷煤柱宽度为8 m、10 m、12 m、16 m时的巷道围岩变形和塑性区分布规律。分析结果表明,随着煤柱宽度的增加,巷道围岩变形量减小,煤柱更加稳定,但当煤柱宽度超过12 m时,加大煤柱宽度对维护巷道的稳定作用并不明显,最终确定护巷煤柱宽度为12 m。现场实践表明,煤柱留设宽度减至8 m后,仍可满足下一工作面安全开采要求。  相似文献   

2.
针对某矿9#煤特厚煤层9-704综放工作面动压巷道在本工作面回采过程中,出现变形量过大难以控制的问题,采用理论分析、数值模拟及现场变形实测等手段对特厚煤层综放工作面区段动压煤柱应力分布和动压巷道变形进行研究。极限平衡法表明在该条件下动压巷道护巷煤柱宽度不应小于24.5 m.数值分析表明,煤柱宽度大于26 m时能够较好地控制煤柱的应力及变形,最终确定该动压巷道护巷煤柱宽度为26 m.现场实测表明,动压巷道变形过大的原因在于护巷煤柱留设宽度过窄。动压巷道护巷煤柱宽度的计算必须考虑煤柱沿相邻工作面采空区方向及本工作面方向塑性区的宽度。该研究对类似条件下动压巷道护巷煤柱的留设宽度具有一定借鉴意义。  相似文献   

3.
为确定大倾角煤层沿空掘巷预留小煤柱合理宽度,通过理论计算对护巷煤柱宽度进行了分析;运用UDEC模拟软件对不同煤柱宽度下巷道的变形量和煤柱应力进行了数值模拟。结果表明:理论计算的煤柱合理宽度应为5m;综合数值模拟中煤层顶板支承压力分布、巷道变形量和煤柱应力集中情况选取煤柱宽度为5m,与理论计算相符;将所得结果应用于21071工作面回风巷的掘进,即留设5m煤柱沿空掘进巷道,回采期巷道变形量能满足矿井正常生产需求,无需返修。  相似文献   

4.
张洪明 《煤》2023,(4):46-49
斜沟煤矿8号煤层回采巷道宽煤柱护巷及采用全锚索支护效果不佳,以18104胶带巷为例,理论分析计算得到窄煤柱宽度为7.44~8.68 m.借助UDEC软件从煤柱受力、巷道表面变量角度分析确定合理煤柱宽度应小于等于8 m.最终确定18104胶带巷护巷煤柱宽度8 m.结合数值模拟分析结果设计巷道锚杆锚索支护方案,掘巷阶段综合矿压监测数据表明,巷道表面变形量及锚杆载荷在合理范围内,整体支护效果良好。  相似文献   

5.
掘采全过程沿空掘巷小煤柱应力分布研究   总被引:3,自引:0,他引:3  
基于理论分析、FLAC3D数值模拟及现场工程实践的方法,研究了不同宽护巷煤柱沿空掘巷掘采全过程的应力场分布规律,分析了煤柱宽度对沿空掘巷煤柱和实体帮应力演化的影响。提出确定沿空掘巷合理煤柱宽度时,不仅需考虑掘巷扰动影响,还应将本工作面的超前采动影响作为一个重要影响因素。研究结果表明:仅考虑掘巷扰动影响时,沿空掘巷煤柱宽度应大于6 m,此时掘巷稳定后围岩变形量较小;当考虑超前采动影响时,煤柱增加到8 m后不仅对控制回采期间沿空掘巷两帮变形量的作用不再显著增加,反而会使顶底板变形量增大,因此合理的护巷煤柱宽度为8 m。  相似文献   

6.
《煤》2017,(7):24-26
为研究浅埋深工作面回采巷道护巷煤柱合理宽度,以潞安矿区某矿浅埋深1102工作面为研究背景,通过理论计算确定了该地质采矿条件下护巷煤柱合理宽度,并运用数值模拟软件验证了煤柱宽度的合理性,对比了不同护巷煤柱宽度下的煤柱及巷道的稳定性。结果表明:当护巷煤柱宽度确定为15 m时,护巷煤柱内部存在宽度为9.5 m的弹性核区,大于安全要求的5 m弹性核宽度,为相似采矿条件下护巷煤柱合理宽度的确定提供了一定的依据和方法。  相似文献   

7.
陈晓祥  王逸良  张天 《煤矿安全》2020,51(6):66-71,76
为解决迎采对掘窄煤柱护巷围岩变形大、支护困难的问题,以高平七一煤业9104工作面运输巷为例,采用现场调研、数值模拟和工业性试验相结合的方法,对迎采对掘期间巷道围岩变形规律、煤柱尺寸及相应支护参数的确定进行了研究。结果表明:随着煤柱宽度的增加,巷道围岩变形量及煤柱内的应力分布特征呈现出明显的差异性,并基于此确定了七一煤业9104工作面运输巷合理煤柱宽度为5 m;迎采对掘动压巷道围岩位移调整过程主要集中在掘进工作面和临近回采工作面相遇前方20 m至后方100 m处,此阶段的巷道变形量约占总变形量的70.5%左右。工业性试验研究表明:5 m窄煤柱护巷及优化后的支护参数,能够有效控制巷道围岩变形,基本保证了巷道在其服务年限内的正常使用。  相似文献   

8.
根据芍药花煤矿4404工作面工程地质条件,采用理论分析,FLAC3D数值模拟和现场实测相结合的方法研究了孤岛综放工作面合理护巷煤柱尺寸,分析了不同宽度护巷煤柱条件下煤柱内弹塑性区发育情况和竖直应力分布规律,结果表明:当煤柱宽度在20~25 m之间时,煤柱中部有足够大的弹性核,可保证煤柱自身及巷道的稳定性;当煤柱宽度大于19 m时,煤柱内竖直应力开始减小,并且呈现出双峰应力分布状态,由此确定4404工作面合理护巷煤柱宽度为20 m。  相似文献   

9.
为确定五阳煤矿"孤岛"综放工作面合理护巷煤柱宽度,控制回采巷道变形破坏,以7603工作面为工程背景,采用三维有限差分软件FLAC3D,对不同护巷煤柱宽度条件下的回采巷道围岩应力分布和塑性区发育特征进行了模拟分析,结果表明:该工作面合理的护巷煤柱宽度为22.5m。  相似文献   

10.
根据芍药花煤矿4404工作面工程地质条件,采用理论分析,FLAC3D数值模拟和现场实测相结合的方法研究了孤岛综放工作面合理护巷煤柱尺寸,分析了不同宽度护巷煤柱条件下煤柱内弹塑性区发育情况和竖直应力分布规律,结果表明:当煤柱宽度在2025 m之间时,煤柱中部有足够大的弹性核,可保证煤柱自身及巷道的稳定性;当煤柱宽度大于19 m时,煤柱内竖直应力开始减小,并且呈现出双峰应力分布状态,由此确定4404工作面合理护巷煤柱宽度为20 m。  相似文献   

11.
基于地应力测量和三维建模技术,对黄岩汇15111工作面褶曲构造应力场进行了反演,研究了构造应力区采空区边缘不同位置处煤层顶板垂直应力的分布特征,不同位置处护巷煤柱上垂直应力、巷道顶板水平应力、以及巷道围岩变形量随煤柱宽度增加而变化的规律,并据此探索了一种确定构造应力区沿空巷道合理窄煤柱宽度方法,确定该构造应力区窄煤柱宽度为6.5 m。研究发现:构造应力区采空区边缘应力集中系数减少量在背斜左翼、向斜右翼中部最为明显;处于背斜左翼、向斜右翼中心对称位置煤柱上垂直应力、巷道顶板水平应力曲线呈“分别相似”特征,且该特征随着煤柱宽度增加而变得明显;构造应力区窄煤柱上垂直应力峰值偏向巷道侧,且垂直应力场随着煤柱宽度增加出现明显的内、外应力场;构造应力对沿空巷道顶板水平应力的分布也有影响,煤柱宽度为4.0~8.0 m时,巷道顶板水平应力自褶曲背向斜交界处向背、向斜轴部呈递减趋势,煤柱宽度为9.0~16.0 m时,呈递增趋势;褶曲对巷道围岩变形量的影响在煤柱宽度较窄时较为明显,在煤柱宽度4.0~10.0 m时,褶曲背、向斜中心对称位置巷道围岩变形量呈“分别相似”特征,煤柱宽度大于10.0 m后褶曲背、向斜中心对称位置巷道围岩变形量变化特征趋于一致。  相似文献   

12.
针对综放工作面厚煤层,过大的护巷煤柱造成煤炭资源浪问题,以串草圪旦煤矿6 102工作面为工程背景。结合运用理论分析、数值模拟与现场试验等方法,分析了不同宽度的护巷煤柱的应力及弹塑性区的分布规律,研究表明:(1)掘巷期间,随着护巷煤柱宽度的增大,6 103采空区侧的应力分布基本无明显变化,而6 102辅运巷道侧的应力分布为降低趋势,护巷煤柱中部应力叠加现象为降低趋势。(2)当护巷煤柱宽度大于15 m时,护巷煤柱两侧的塑性区范围基本无明显变化,护巷煤柱内的弹性区宽度随着护巷煤柱宽度的增大而增大。(3)回采期间,留设的护巷煤柱宽度大于14 m时,回采工作面附近的护巷煤柱存在弹性区,综合考虑合理的护巷煤柱的宽度为14 m。(4)现场实践证明巷道围岩得到了很好的控制。  相似文献   

13.
张科学 《煤炭学报》2011,36(Z1):28-35
针对深部煤层群沿空掘巷具体生产地质条件,采用理论分析、数值计算及现场试验相结合的方法,得出深部煤层群沿空掘巷护巷煤柱合理宽度的确定方法,即从上区段采空区侧向支承应力分布规律和煤柱应力分布、巷道围岩应力分布、巷道围岩变形与煤柱宽度的关系及护巷煤柱宽度的理论计算5个方面综合考虑护巷煤柱的宽度,尤其充分考虑了下层煤回采对上层煤沿空掘巷护巷煤柱宽度大小留设的影响。现场试验结果表明:该方法确定的煤柱宽度科学、可靠,为深部煤层群沿空掘巷护巷煤柱合理宽度的确定提供了科学依据,改善了深部巷道维护困难的局面和提高了煤炭资源采出率。  相似文献   

14.
梁兆明 《煤》2018,(10)
文章以申南凹矿首采盘区20103运输巷的护巷煤柱合理宽度留设为研究背景,采用多方案数值模拟的方法,对工作面护巷煤柱合理宽度进行研究,主要结论如下:通过对5种不同护巷煤柱宽度下巷道围岩受力情况分析发现,当煤柱宽度为20 m时,煤柱宽度基本满足巷道稳定性要求,但是考虑到该矿井复杂的地质情况及一定安全系数,最终确定护巷煤柱宽度为25 m。  相似文献   

15.
为了分析新大地煤业有限公司15201工作面进风副巷的采动变形规律,对不同区段煤柱宽度下的进风副巷道变形规律进行了数值模拟。结果表明:随着煤柱宽度的增加,进风副巷断面闭合率逐渐减小,煤柱宽度由15 m增大至25 m时,巷道断面闭合率由62.36%减小到20.4%;煤柱宽度大于25 m时,巷道的断面变形量随煤柱宽度的增加变化不明显;确定了合理的进风副巷煤柱宽度为26~30 m。  相似文献   

16.
针对麻家梁煤矿沿采空区边缘布置回采巷道、合理确定沿空留巷护巷煤柱宽度的问题,依据矿井生产地质条件及现场实际,采用数值模拟的方法,研究不同沿空留巷护巷煤柱宽度条件下煤柱内垂直应力、水平应力分布特征和巷道围岩变形特征,得到合理的沿空留巷护巷煤柱宽度,并计算出合理的巷道支护方案,为工作面安全回采、提高矿井资源利用率提供保证。  相似文献   

17.
李立  郭亚奔  刘慧妮  丁科  李宏儒 《中国矿业》2022,(12):121-128+137
为了分析孤岛工作面窄煤柱合理宽度,结合某矿2102孤岛工作面工程实例,引入尖点突变模型,理论分析了煤柱合理宽度范围。建立FLAC3D数值模型,模拟不同煤柱宽度时垂直应力分布状态及巷道围岩塑性区分布。理论计算结果表明:根据尖点突变模型,煤柱极限宽度需大于7.5 m。数值模拟结果表明:当煤柱宽度为6~8 m时,巷道处于低应力环境;当煤柱宽度大于8 m时,在煤柱内部开始出现集中应力,并且随着煤柱宽度增加,集中应力程度越明显。根据理论分析及数值模拟结果,最终确定2102孤岛面沿空掘巷窄煤柱宽度为8 m。现场布置矿压测站监测巷道表面位移及顶板离层量,巷道表面无明显变形,底鼓量最大280 mm,两帮位移量在130 mm以内,顶板下沉量在50 mm以内。顶板离层量较小,浅部离层量在5 mm以内,深部离层量在3 mm以内,能够保证工作面安全回采。  相似文献   

18.
为研究高应力厚煤层巷道掘进过程中护巷煤柱宽度留设的问题,根据掘进工作面工程地质概况,采用FLAC~(3D)数值计算方法对不同煤柱宽度进行模拟,研究不同宽度煤柱下的垂直应力、水平应力及塑性区分布规律。研究结果表明:煤柱宽度的留设对巷道围岩应力影响较大,留设5m煤柱,峰值应力达到43.3MPa,煤柱宽度为25m时,峰值应力为27.5MPa;巷道开挖过程中,受到压应力远大于拉应力,拉应力随煤柱宽度增加"先增后减",当煤柱宽度为15m时,压应力最大,为20.7MPa,当煤柱宽度为20m时,压应力最小,为17.7MPa;煤柱宽度小于10m,煤柱整体呈塑性状态,煤柱宽度大于10 m,弹性核区宽度随煤柱宽度增大而增大。综合考虑,留设护巷煤柱最佳宽度为20m。  相似文献   

19.
王志强  仲启尧  王鹏 《煤矿安全》2020,(1):216-221,228
为研究在高应力软岩条件下窄煤柱留设问题,以曙光矿2~#煤层开采为工程背景,采用理论分析与数值模拟相结合的方法,得出错层位外错式沿空掘巷窄煤柱的确定方法,即从上区段采空区侧向支承应力分布规律、护巷煤柱宽度的理论计算、煤柱垂直应力和煤柱塑性区分布4个方面综合考虑护巷煤柱的宽度。理论计算得出破裂区为3.35 m,塑性区为5.76 m,利用数值模拟得出煤柱合理留设宽度为3.37~5.13 m。通过对不同煤柱宽度下巷道围岩应力分布进行数值分析,结果表明:当煤柱宽度为4 m时,巷道围岩变形小。  相似文献   

20.
为研究特厚煤层综放工作面沿空掘巷留设小煤柱的合理宽度,以塔山煤矿8117工作面回风巷为研究对象,采用理论计算、数值模拟和现场实测相结合的研究方法进行研究。研究表明:相邻工作面采空区稳定后煤体侧向支承应力降低区范围为0~13.7 m,煤柱宽度在8 m以下可确保8117工作面回风巷处于应力降低区,有利于巷道围岩的稳定;煤柱宽度大于8 m时,煤柱内弹性区随煤柱宽度的增加而增大,煤柱中部垂直应力开始超过原岩应力;最终确定采用8 m小煤柱。现场观测表明,留设8 m煤柱时,8117回风巷在掘进和回采阶段巷道两帮移近量和顶底板下沉量较小,煤柱可以有效支撑顶板、控制围岩变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号