首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
邹承明  罗莹  徐晓龙 《计算机应用》2018,38(7):1853-1856
针对单一特征表示的局限性会导致细粒度图像分类准确度不高的问题,提出了一种基于卷积神经网络(CNN)和尺度不变特征转换(SIFT)的多特征组合表示方法,综合考虑对目标整体、关键部位和关键点的特征提取。首先,分别以细粒度图像库中的目标整体和头部区域训练CNN得到两个网络模型,用来提取目标的整体和头部CNN特征;然后,对图像库中所有目标区域提取SIFT关键点并通过K均值(K-means)聚类生成码本,再将每个目标区域的SIFT描述子通过局部特征聚合描述符(VLAD)参照码本编码为特征向量;最后,组合多种特征作为最终的特征表示,采用支持向量机(SVM)对细粒度图像进行分类。使用该方法在CUB-200-2011数据库上进行实验,并与单一的特征表示方法进行了比较。实验结果表明,该方法与基于单一CNN特征的细粒度图像分类相比提升了13.31%的准确度,证明了多特征组合对细粒度图像分类的积极作用。  相似文献   

2.
基于深度模型迁移的细粒度图像分类方法   总被引:1,自引:0,他引:1  
刘尚旺  郜翔 《计算机应用》2018,38(8):2198-2204
针对细粒度图像分类方法中存在模型复杂度较高、难以利用较深模型等问题,提出深度模型迁移(DMT)分类方法。首先,在粗粒度图像数据集上进行深度模型预训练;然后,使用细粒度图像数据集对预训练模型logits层进行不确切监督学习,使其特征分布向新数据集特征分布方向迁移;最后,将迁移模型导出,在对应的测试集上进行测试。实验结果表明,在STANFORD DOGS、CUB-200-2011、OXFORD FLOWER-102细粒度图像数据集上,DMT分类方法的分类准确率分别达到72.23%、73.33%和96.27%,验证了深度模型迁移方法在细粒度图像分类领域的有效性。  相似文献   

3.
目的 由于分类对象具有细微类间差异和较大类内变化的特点,细粒度分类一直是一个具有挑战性的任务。绝大多数方法利用注意力机制学习目标中显著的局部特征。然而,传统的注意力机制往往只关注了目标最显著的局部特征,同时抑制其他区域的次级显著信息,但是这些抑制的信息中通常也含有目标的有效特征。为了充分提取目标中的有效显著特征,本文提出了一种简单而有效的互补注意力机制。方法 基于SE(squeeze-and-excitation)注意力机制,提出了一种新的注意力机制,称为互补注意力机制(complemented SE,CSE)。既从原始特征中提取主要的显著局部特征,也从抑制的剩余通道信息中提取次级显著特征,这些特征之间具有互补性,通过融合这些特征可以得到更加高效的特征表示。结果 在CUB-Birds(Caltech-UCSD Birds-200-2011)、Stanford Dogs、Stanford Cars和FGVC-Aircraft(fine-grained visual classification of aircraft)4个细粒度数据集上对所提方法进行验证,以ResNet50为主干网络,在测试集上的分类精度分别达到了87.9%、89.1%、93.9%和92.4%。实验结果表明,所提方法在CUB-Birds和Stanford Dogs两个数据集上超越了当前表现最好的方法,在Stanford Cars和FGVC-Aircraft数据集的表现也接近当前主流方法。结论 本文方法着重提升注意力机制提取特征的能力,得到高效的目标特征表示,可用于细粒度图像分类和特征提取相关的计算机视觉任务。  相似文献   

4.
在细粒度图像分类任务中,提取出具有区分性的局部特征对识别图像之间的微小差异非常重要。基于ViT(vision transformer)框架的算法模型在计算机视觉各个研究领域取得了优异的表现。针对基于ViT框架的细粒度图像分类模型对图片局部区域关注度低的问题且为进一步加强图像块特征的上下文联系,提出了一种基于加强图像块相关性的细粒度图像分类方法。首先,提出了赋予图像块相关性权重的方法,并嵌套应用于不同层编码器中丰富不同层次特征信息,解决了ViT对图像局部特征关注不够的问题;其次,结合图像块的位置信息加强了局部特征上下文的联系,同时减少了噪声信息带来的干扰;最后,提出相似损失函数来学习细粒度图像中微小特征的差异性,优化模型的分类效果。在两个公开数据集CUB-200-2011和Standford Dogs上进行实验分别取得了91.33%、92.15%的准确率,提出的方法分别比基准模型ViT网络提升了0.63、0.45百分点,有效提升了细粒度图像分类效果,验证了方法的有效性。  相似文献   

5.
在细粒度图像分类任务中,巨大的类内方差决定了该任务的分类依赖于粗粒度和细粒度信息.最近的工作主要关注于如何定位不同粒度的辨别性局部来解决这个问题.然而,在如何选择具有辨别性的粒度以及融合多粒度特征方面,现有的工作还缺乏一定研究.因此,本文提出了一个融合多粒度特征的细粒度图像分类网络,首先通过一个局部错位模块选择细粒度图像中的不同粒度,然后引入注意力机制定位它们并提取其多粒度特征,并且通过迭代学习的方式提取多粒度间的互补信息,最后采用可变形卷积融合这些多粒度特征,从而实现细粒度图像分类.本文所提出的方法在CUB-200-2011、FGVC-Aircraft和Stanford Cars三个数据集上准确率分别达到88.6%、93.6%和94.8%,这表明本文的方法能够获得优秀的分类性能.  相似文献   

6.
细粒度图像分类旨在从某一类别的图像中区分出其子类别,通常细粒度数据集具有类间相似和类内差异大的特点,这使得细粒度图像分类任务更加具有挑战性.随着深度学习的不断发展,基于深度学习的细粒度图像分类方法表现出更强大的特征表征能力和泛化能力,能够获得更准确、稳定的分类结果,因此受到了越来越多研究人员的关注和研究.首先,从细粒度...  相似文献   

7.
现有的小样本学习算法未能充分提取细粒度图像的特征,导致细粒度图像分类准确率较低。为了更好地对基于度量的小样本细粒度图像分类算法中提取的特征进行建模,提出了一种基于自适应特征融合的小样本细粒度图像分类算法。在特征提取网络上设计了一种自适应特征融合嵌入网络,可以同时提取深层的强语义特征和浅层的位置结构特征,并使用自适应算法和注意力机制提取关键特征。在训练特征提取网络上采用单图训练和多图训练方法先后训练,在提取样本特征的同时关注样本之间的联系。为了使得同一类的特征向量在特征空间中的距离更加接近,不同类的特征向量的距离更大,对所提取的特征向量做特征分布转换、正交三角分解和归一化处理。提出的算法与其他9种算法进行实验对比,在多个细粒度数据集上评估了5 way 1 shot的准确率和5 way 5 shot的准确率。在Stanford Dogs数据集上的准确率提升了5.27和2.90个百分点,在Stanford Cars数据集上的准确率提升了3.29和4.23个百分点,在CUB-200数据集上的5 way 1 shot的准确率只比DLG略低0.82个百分点,但是5 way 5 shot上提升了1.55个百分点。  相似文献   

8.
针对细粒度图像分类任务中难以对图中具有鉴别性对象进行有效学习的问题,本文提出了一种基于注意力机制的弱监督细粒度图像分类算法.该算法能有效定位和识别细粒度图像中语义敏感特征.首先在经典卷积神经网络的基础上通过线性融合特征得到对象整体信息的表达,然后通过视觉注意力机制进一步提取特征中具有鉴别性的细节部分,获得更完善的细粒度特征表达.所提算法实现了线性融合和注意力机制的结合,可看作是多网络分支合作训练共同优化的网络模型,从而让网络模型对整体信息和局部信息都有更好的表达能力.在3个公开可用的细粒度识别数据集上进行了验证,实验结果表明,所提方法有效性均优于基线方法,且达到了目前先进的分类水平.  相似文献   

9.
细粒度图像具有类内方差大、类间方差小的特点,致使细粒度图像分类(FGIC)的难度远高于传统的图像分类任务。介绍了FGIC的应用场景、任务难点、算法发展历程和相关的常用数据集,主要概述相关算法:基于局部检测的分类方法通常采用连接、求和及池化等操作,模型训练较为复杂,在实际应用中存在较多局限;基于线性特征的分类方法模仿人类视觉的两个神经通路分别进行识别和定位,分类效果相对较优;基于注意力机制的分类方法模拟人类观察外界事物的机制,先扫描全景,后锁定重点关注区域并形成注意力焦点,分类效果有进一步的提高。最后针对目前研究的不足,展望FGIC下一步的研究方向。  相似文献   

10.
基于深度卷积特征的细粒度图像分类研究综述   总被引:1,自引:0,他引:1  
罗建豪  吴建鑫 《自动化学报》2017,43(8):1306-1318
细粒度图像分类问题是计算机视觉领域一项极具挑战的研究课题,其目标是对子类进行识别,如区分不同种类的鸟.由于子类别间细微的类间差异和较大的类内差异,传统的分类算法不得不依赖于大量的人工标注信息.近年来,随着深度学习的发展,深度卷积神经网络为细粒度图像分类带来了新的机遇.大量基于深度卷积特征算法的提出,促进了该领域的快速发展.本文首先从该问题的定义以及研究意义出发,介绍了细粒度图像分类算法的发展现状.之后,从强监督与弱监督两个角度对比分析了不同算法之间的差异,并比较了这些算法在常用数据集上的性能表现.最后,我们对这些算法进行了总结,并讨论了该领域未来可能的研究方向及其面临的挑战.  相似文献   

11.
目的 细粒度图像分类是计算机视觉领域具有挑战性的课题,目的是将一个大的类别分为更详细的子类别,在工业和学术方面都有着十分广泛的研究需求。为了改善细粒度图像分类过程中不相关背景干扰和类别差异特征难以提取的问题,提出了一种将目标检测方法YOLOv3(you only look once)和双线性融合网络相结合的细粒度分类优化算法,以此提高细粒度图像分类的性能。方法 利用重新训练过的目标检测算法YOLOv3粗略确定目标在图像中的位置;使用背景抑制方法消除目标以外的信息干扰;利用融合不同通道、不同层级卷积层特征的方法对经典的细粒度分类算法双线性卷积神经网络(bilinear convolutional neural network,B-CNN)进行改进,优化分类性能,通过融合双线性网络中不同卷积层的特征向量,得到更加丰富的互补信息,从而提高细粒度分类精度。结果 实验结果表明,在CUB-200-2011(Caltech-UCSD Birds-200-2011)、Cars196和Aircrafts100数据集中,本文算法的分类准确率分别为86.3%、92.8%和89.0%,比经典的B-CNN细粒度分类算法分别提高了2.2%、1.5%和4.9%,验证了本文算法的有效性。同时,与已有细粒度图像分类算法相比也表现出一定的优势。结论 改进算法使用YOLOv3有效滤除了大量无关背景,通过特征融合方法来改进双线性卷积神经分类网络,丰富特征信息,使分类的结果更加精准。  相似文献   

12.
随着深度学习的快速发展,计算机视觉领域对图像的分类研究不仅仅局限于识别出物体的类别,更需要在传统图像分类任务的基础上进行更细致的类别划分.通过对现有细粒度图像分类算法和模型的分析研究,提出一种基于Xception模型与WSDAN(weakly supervised data augmentation network)弱...  相似文献   

13.
针对细粒度图像分类任务中存在的区分性特征太过细微难以捕捉、无法有效地定位感兴趣的区域等问题,提出一种多尺度显著特征双线注意力分类方法.首先设计区域显著特征增强模块,通过区域切片操作放大并捕获细微可区分特征,增强特征图表达能力;然后提出多分支双线注意力池化策略,以弱监督方式层次化表征对象的显著部位特征,提高不同尺度局部信息的关注能力;最后利用反事实学习思想量化注意力质量,将真实的注意力和无关注意力对最终预测结果的差异作为衡量指标,通过差异最大化迫使双线注意力池化策略学习更有效特征.在CUB-200-2011,StanfordCars和StanfordDogs这3个公开数据集上,所提方法的准确率分别达到89.3%,95.0%和87.6%,相比其他方法的性能有较大幅度的提升.  相似文献   

14.
视觉注意力机制在细粒度图像分类中得到了广泛的应用。现有方法多是构建一个注意力权重图对特征进行简单加权处理。对此,本文提出了一种基于可端对端训练的深度神经网络模型实现的多通道视觉注意力机制,首先通过多视觉注意力图描述对应于视觉物体的不同区域,然后提取对应高阶统计特性得到相应的视觉表示。在多个标准的细粒度图像分类测试任务中,基于多通道视觉注意的视觉表示方法均优于近年主流方法。  相似文献   

15.
针对细粒度图像分类问题提出了一种有效的算法以实现端到端的细粒度图像分类.ECA-Net中ECA(efficient channel attention)模块是一种性能优势显著的通道注意力机制,将其与经典网络ResNet-50进行融合构成新的基础卷积神经网络ResEca;通过物体级图像定位模块与部件级图像生成模块生成物体级图像和部件级图像,并结合原始图像作为网络的输入,构建以ResEca为基础的三支路网络模型Tb-ResEca-Net(three branch of ResEca network).该算法在公有数据集CUB-200-2011、FGVC-aircraft和Stanford cars datasets上进行测试训练,分别取得了89.9%、95.1%和95.3%的准确率.实验结果表明,该算法相较于其他传统的细粒度分类算法具有较高的分类准确率以及较强的鲁棒性,是一种有效的细粒度图像分类方法.  相似文献   

16.
细粒度图像分类任务由于自身存在的细微的类间差别和巨大的类内差别使其极具挑战性,为了更好地学习细粒度图像的潜在特征,该算法将知识蒸馏引入到细粒度图像分类任务中,提出基于知识蒸馏与目标区域选取的细粒度图像分类方法(TRS-DeiT),能使其兼具CNN模型和Transformer模型的各自优点。此外,TRS-DeiT的新型目标区域选取模块能够获取最具区分性的区域;为了区分任务中的易混淆类,引入对抗损失函数计算不同类别图像间的相似度。最终,在三个经典细粒度数据集CUB-200-2011、Stanford Cars和Stanford Dogs上进行训练测试,分别达到90.8%、95.0%、95.1%的准确率。实验结果表明,该算法相较于传统模型具有更高的准确性,通过可视化结果进一步证实该算法的注意力主要集中在识别对象,从而使其更擅长处理细粒度图像分类任务。  相似文献   

17.
局部图像描述符最新研究进展   总被引:2,自引:2,他引:2       下载免费PDF全文
目的 局部图像描述符广泛应用于许多图像理解和计算机视觉应用领域,如图像分类、目标识别、图像检索、机器人导航、纹理分类等。SIFT算法的提出标志着现代局部图像描述符研究的开始。主要对最近发展的现代局部图像描述符进行了综述。方法 首先,介绍了4大类局部图像描述符:局部特征空间分布描述符、局部特征空间关联描述符、基于机器学习的局部描述符、扩展局部描述符(局部颜色描述符、局部RGB-D描述符、局部空时描述符)。对局部图像描述符进行了分析和分类,并总结了局部图像描述符的不变性、计算复杂度、应用领域、评价方法和评价数据集。最后,展望了局部图像描述符的未来研究方向。结果 近年来局部图像描述符研究取得了很大进展,提出了很多优秀的描述符,在辨别性、鲁棒性和实时性方面有了很大提高,应用领域不断拓展。结论 局部图像描述符应用广泛,是计算机视觉领域的重要基础研究。而目前,局部图像描述符还存在许多问题,还需进一步的深入研究。  相似文献   

18.
细粒度图像分类(FGVC)具有类间差异小、类内差异大等特点,提升该任务效果的关键在于识别目标的判别性部位。目前基于注意力机制的方法一般会识别一个或者两个判别性部位,效果不佳。为此,提出一种注意力互斥正则机制的细粒度模型(AMEM),通过限制注意力图的不同通道关注不同目标部位,引导模型关注目标的多个判别性部位。在CUB-200-2011、FGVC-Aircraft、Stanford Cars和Stanford Dogs等4个公开数据集上进行评测,实验表明AMEM取得了90.5%、94.3%、95.5%和93.2%的准确率,效果优于对比实验中的其他细粒度模型;此外热力图显示可以识别出指定数目的判别性部位。AMEM在提升预测性能的同时,也能提供一定程度的预测可解释性。  相似文献   

19.
由于类内差异大且类间差异小,因此细粒度图像分类极具挑战性。鉴于深层特征具有很强的特征表示能力,而中层特征又能有效地补充全局特征在图像细粒度识别中的缺失信息,因此,为了充分利用卷积层的特征,本文提出细粒度图像分类的通道自适应判别性学习方法:首先在通道方向上聚集中级特征以获取目标位置;然后对通过感兴趣区域特征交互级联得到的信息进行分类;最后进行端到端的训练,无需任何边界框和零件注释。在CUB-200-2011、Stanford Cars和FGVC-Aircraft这3个公共数据集上开展大量实验,与其他方法相比,本文方法既可以保持简单性和推理效率又可提升分类准确度。  相似文献   

20.
如何对识别物体进行精确定位并提取更具有表达力的特征,是细粒度图像分类算法的核心问题之一.为此,本文提出了一种基于注意力机制的双线性卷积神经网络细粒度图像分类算法(BAM B-CNN),主要工作如下:1)通过VGG-16网络获得原始图像的激活映射图,选取大于平均值的最大联通区域作为物体图像;2)使用区域建议网络(RPN)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号