首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
赞比亚某低品位高结合率难处理氧化铜矿石铜品位为1.56%,主要铜矿物为赤铜矿、黄铜矿、铜蓝、水胆矾;主要脉石矿物为石英、云母、铁白云石等。铜氧化率高达82.85%,以结合氧化铜为主;硫化铜仅占17.15%,主要为原生硫化铜。为确定该矿石的合理开发利用工艺,进行了系统的硫酸酸浸试验。结果表明:①提高浸出试样细度,延长浸出时间,提高浸出温度,增大液固质量比和搅拌速度均有利于改善氧化铜矿石的浸出效果。②矿石在磨矿细度为-200目占60%、硫酸浓度为50 g/L、液固质量比为3、浸出温度为65 ℃、搅拌速度为300 r/min,浸出时间为120 min情况下,铜的浸出率达78.64%。③硫酸浸出该矿石的浸出动力学受化学反应模型控制,反应的表观活化能为37.83 kJ/mol。  相似文献   

2.
赞比亚某复杂铜矿预处理—酸浸提铜试验   总被引:1,自引:0,他引:1  
赞比亚某复杂难选氧化铜矿石矿物组成复杂,属结合相占比较高的氧化铜矿石,铜品位为2.10%。为开发利用该铜矿石资源,采用预处理—硫酸酸浸工艺进行了浸铜工艺参数研究。结果表明,在磨矿细度为-200目占58%,预处理剂K1浓度为9%、液固比为1∶1、预处理温度为85℃、预处理时间为1 h,酸浸的硫酸浓度为5%、液固比为1.5∶1、浸出温度为50℃、浸出时间为3h的情况下,可取得88.83%的铜浸出率。较好地解决了矿石的铜浸出问题,为开发利用该铜矿资源提供了技术依据。  相似文献   

3.
尼日利亚某铜矿石属于铜品位高、氧化程度深、含泥量大、铜矿物组成复杂且嵌布粒度粗细不均的难选氧化铜矿石。为确定矿石的合理开发利用工艺,分别进行了硫化浮选工艺和硫酸酸浸工艺研究。结果表明,矿石在磨矿细度为-0.074 mm占90%的情况下,采用1粗4精3扫浮选流程处理,可获得铜品位为20.23%、铜回收率为74.35%的铜精矿;矿石在磨矿细度为-0.074 mm占55%、硫酸浓度为74 g/L、矿浆浓度为33%、浸出时间为2 h、搅拌速度为300 r/min的情况下,铜浸出率可达77.22%。从节能、增效角度考虑,酸浸工艺相对更适合该矿石的处理,在磨矿细度-0.074 mm含量从90%降至55%的情况下,铜浸出率高出浮选工艺铜回收率2.87个百分点。  相似文献   

4.
某硫酸渣-0.043 mm占65%,铜品位为0.81%,其中硫酸铜占总铜的40.74%,自由氧化铜占总铜的30.87%,硫化铜占总铜的8.64%,结合铜占总铜的19.75%,属宝贵的二次资源。为开发利用该二次资源,采用硫酸酸浸工艺进行了铜回收试验。结果表明,硫酸渣在不磨矿、浸出酸度为18%,浸出时间为4 h,液固比为4∶1,浸出温度为50℃,搅拌转速为500 r/min,BKJ用量为3%的情况下浸出,铜浸出率可达78.46%。  相似文献   

5.
东川某氧化铜矿矿石铜品位为1.16%,铜氧化率很高,92.10%的铜以氧化铜的形式存在,碱性脉石含量高,铜矿物嵌布粒度较细,嵌布特征复杂,属高钙镁难选氧化铜矿石。为合理开发利用该矿石,针对硫化—浮选和酸碱浸出效果较差的问题,采用氨基甲酸铵作为浸出剂进行浸出试验研究,考察磨矿细度、氨基甲酸铵用量、浸出温度、浸出时间、搅拌强度、液固比对铜浸出率的影响。在确定的最佳浸出试验条件下,最终可获得铜回收率为85.42%、损失在浸渣铜品位仅为0.194%的良好指标。该浸出试验结果可为该碱性难选氧化铜矿石的工业利用提供技术参考。  相似文献   

6.
某高结合率氧化铜矿石酸浸试验   总被引:1,自引:0,他引:1  
某氧化铜矿石中主要铜矿物为赤铜矿和硅孔雀石,铜品位达6.91%,氧化率为98.30%,结合率为45.60%,适宜采用硫酸浸出工艺回收铜。对硫酸浸出工艺技术条件进行了研究,结果表明,在硫酸用量为185.6 kg/t、矿浆浓度为35%、磨矿细度为-200目占60%、浸出时间为1.5 h的情况下,获得了95.51%的铜浸出率。  相似文献   

7.
某低品位含铜硫酸渣铜品位为0.29%,铁品位为56.11%,直接采用浮选或硫酸浸出均无法回收硫酸渣中的铜,且影响最终铁精矿的质量,造成铜、铁资源浪费。研究发现,硫酸渣经还原焙烧后,铜主要以硫化铜形式存在,矿物嵌布粒度较细。探讨了浸出剂硫酸浓度、磨矿细度、浸出温度、液固比、浸出时间等参数对还原焙烧后硫酸渣中铜浸出的影响。在浸出剂H2SO4体积浓度为3%、磨矿细度-0.045mm占74.55%、浸出温度70℃、固液比1∶4(g/mL)、浸出时间为3h的最佳浸出条件下,铜的浸出率为77.63%,浸渣Cu含量为0.066%。硫酸渣原样经还原焙烧—磨矿—铜浸出—磁选分离试验,铜的浸出率可达82.68%,还可得到铁品位为66.45%、含铜品位为0.052%的合格铁精矿。实现了硫酸渣中铜、铁资源的回收。  相似文献   

8.
碳酸铵溶液浸出非洲氧化铜矿的研究   总被引:1,自引:1,他引:0  
以碳酸铵作浸出剂, 利用其受热分解产生氨气的性质, 对非洲低品位氧化铜矿进行氨性浸出, 考察了矿石粒度、碳酸铵浓度、液固比、反应温度、反应时间、搅拌速度等因素对浸出效果的影响。研究表明, 最佳浸出条件为矿石平均粒度0.150 mm、碳酸铵浓度1.55 mol/L、液固比4∶1、反应温度65 ℃左右、反应时间2 h、搅拌速度350 r/min, 此时铜浸出率达到92.4%, 氨回收率达到95.5%。  相似文献   

9.
云南某铜矿石铜品位为1.39%,主要铜矿物有黄铜矿、辉铜矿、斑铜矿和孔雀石,硫化铜是铜的主要存在形式,占总铜的73.30%,游离氧化铜占总铜的18.04%,结合氧化铜仅占总铜的8.66%。对该矿石进行了选铜试验,结果表明,矿石在磨矿细度为-200目占70%的情况下,采用1粗1扫2精浮选硫化铜矿物,1粗2扫2精浮选氧化铜矿物,中矿顺序返回的闭路流程处理,可获得铜品位为32.16%、铜回收率为90.23%的铜精矿。试验指标较为理想,可作为该铜矿资源开发利用的依据。  相似文献   

10.
非洲某选厂铜矿石以氧化矿为主,铜品位为1.53%、钴品位为0.024%。现场采用浸出工艺回收其中的铜钴资源,随着生产的进行,矿石铜品位逐渐降低,采用原工艺生产,成本较高并且生产指标不稳定。为此,对进入浸出体系的氧化铜矿石重新进行了搅拌浸出试验研究。研究表明:最佳浸出条件为浸出温度65 ℃、矿浆浓度30%、浸出时间3 h、搅拌速度500 r/min,萃余液返回利用,补加酸量为20.24 kg/t,获得了铜浸出率为78.65%、钴浸出率为45.25%的指标。较原现场工艺流程,铜、钴浸出率分别提高了3.65和2.25个百分点。试验结果可以为现场生产提供重要的技术支持。  相似文献   

11.
针对刚果(金)硫化钴铜精矿矿物组成复杂、直接酸浸效果较差等物料特性,研究了热活化-硫酸浸出工艺来强化有价金属铜、钴的回收,取得了理想的浸出效果。试验结果表明,当硫化钴铜精矿、氧化钴矿和无水碳酸钠质量配比为1 GA6FA 3 GA6FA 0.4,于500℃温度下热活化2 h,所得焙砂在初始硫酸浓度为1.25 mol/L,液固比为5 GA6FA 1 mL/g,浸出为温度80℃,搅拌转速为300 r/min的条件下反应时间5 h,钴的浸出率为98.51%、铜的浸出率为97.80%,试验采用的工艺可实现硫化钴铜精矿中钴和铜的高效回收利用。   相似文献   

12.
广东某含硫铁低品位铜矿石主要有用元素铜、硫、铁品位分别为0.51%、27.68%、34.07%。铜赋存状态复杂,以次生硫化铜形式存在的铜占总铜的54.91%,水溶性铜占总铜的26.39%,采用常规浮选方法选别铜回收率低。为探索该矿石中铜、硫、铁的高效分选工艺,对其进行了选冶工艺研究。结果表明:原矿磨细至-0.074 mm占72%时,采用pH=3的硫酸溶液为浸出剂,在液固比为4 mL/g、搅拌转速为1 400 r/min、浸出时间为24 h条件下浸铜,可以获得铜浸出率为93.33%的指标;铜浸渣经自来水搅拌洗涤至pH=6以后,以丁黄药为捕收剂、2号油为起泡剂,经1粗1扫硫浮选,可获得硫品位为48.44%、对铜浸渣回收率为95.57%的高品质硫精矿;浮硫尾矿在磁介质为Φ2 mm棒介质、脉动冲程为16 mm、冲次为280次/min、背景磁感应强度为0.6 T条件下,经1次高梯度强磁选选铁,可获得铁品位为51.42%、对铜浸渣回收率为17.02%的铁精矿。以上试验结果说明,采用铜浸出-硫浮选-铁磁选的工艺流程可以实现矿石中铜硫铁的有效分离。  相似文献   

13.
为了回收铜熔炼烟尘中的有价金属,对某铜冶炼厂产生的高铜、高砷烟尘进行了性质分析,确定了烟尘中主要元素的赋存状态及含量。结果表明,烟尘中铜和锌主要以硫酸盐和氧化物的形式存在,砷主要以氧化物的形式存在,具有良好的浸出特性。采用低浓度酸浸—硫化沉淀法回收烟尘中的铜,并考察了絮凝剂对硫化物矿浆沉降性能的影响。结果表明:(1)在初始硫酸浓度为40 g/L,浸出温度为50℃,浸出时间为90 min,液固体积质量比为4∶1 mL/g的条件下,Cu、Zn、As的浸出率分别为96.33%、96.52%和83.72%。(2)硫化沉铜时,在硫化钠过量系数为1.3,p H值为3.0,反应时间为20 min的条件下,Cu的沉淀率可达到99.99%,硫化沉淀产物主要物相为Cu S,其中铜的品位为56.90%,可直接用于工业生产。沉铜后液可继续回收Zn等有价金属。(3)加入絮凝剂可使硫化沉淀的粒径变大,加速矿浆的沉降并且有助于固液分离。  相似文献   

14.
某高泥氧化铜矿石铜品位为4.26%,主要铜矿物为孔雀石,其次是辉铜矿、硅孔雀石和斜硅铜矿,脉石矿物主要为泥质粉砂岩、石英粉砂、绢云母、绿泥石等。针对氧化铜矿石浮选中矿泥会恶化浮选过程,大量消耗浮选药剂,影响浮选指标的问题,对磨矿细度为-0.074 mm占64.04%的矿石(-0.010 mm占14.05%)优先选出硫化铜矿物后的产品进行了直接硫化浮选和旋流器机械脱泥后的浮选试验。结果表明,用旋流器脱出的产率为12.64%、铜品位为4.82%的细泥采用浸出工艺处理,铜浸出率达95.26%;产率为87.36%、铜品位为3.32%的沉砂采用硫化浮选流程处理,可获得铜品位为24.75%、铜回收率为67.47%的铜精矿,铜综合回收率为84.01%;而直接硫化浮选仅获得铜品位为19.79%、铜回收率为75.09%的铜精矿,尾矿铜品位高达1.02%。与高泥氧化铜矿石的直接浮选相比,脱泥浮选工艺更加平稳、可控,铜回收指标更理想,浮选药剂用量更低,是一种较有发展前景的工艺形式。  相似文献   

15.
陈向  廖德华 《金属矿山》2021,50(5):120-124
广东某含铜浮选金精矿的金品位为8.312 g/t、铜含量为5.18%,工业上采用全泥氰化、浸出渣浮选回收铜的工艺流程。矿石中较高的铜含量不仅消耗大量的氰化物,还影响了金的浸出效果。为了进一步提高金的浸出率、降低氰化物用量,采用加温常压化学预氧化浸铜—浸铜渣氰化浸金工艺回收试样中的铜和金,并在磁处理条件下,考察了磁场强度、磁化时间、起始硫酸浓度、NaCl浓度、浸出温度和浸出时间等因素对金、铜浸出率的影响。试验确定磁处理的最佳条件为:磁场强度150 kA/m,磁化时间50 min,磨矿细度-200目占88%,预氧化温度93 ℃,起始硫酸浓度0.77 mol/L,NaCl浓度0.76 mol/L,预氧化时间27 h。在此条件下进行氧化预处理浸铜及铜渣氰化浸金试验,固定搅拌强度为760 r/min,液固比为3∶1,氧气流量为160 mL/min,氰化钠用量为7 kg/t,铜和金的浸出率分别为85.76%、98.86%。较未进行磁处理的最佳指标(铜浸出率71.28%,金浸出率86.26%)相比,铜浸出率提高了14.48个百分点,金浸出率提高了12.60个百分点;此外,预氧化温度降低了2 ℃,预氧化时间减少了1 h,氰化钠用量减少了3 kg/t。研究结果表明磁处理能有效提高含铜金矿的铜、金浸出率,减少有毒氰化物的用量。  相似文献   

16.
锰渣硫酸浸出正交实验探究   总被引:1,自引:1,他引:0  
练强  张杰 《矿冶工程》2020,40(2):108-110
以电解锰渣为原料, 常温下采用硫酸浸出, 充分利用浓硫酸水化放热效应, 促使锰渣与H2SO4反应。开展了单因素酸浸及正交酸浸实验, 探索了硫酸用量、液固比、反应时间及搅拌速度对锰浸出率的影响。结果表明, 在浓硫酸用量0.5 mL/g、液固比3∶1、反应时间2 h、搅拌速度150 r/min时, 锰浸出率可达到86.53%。  相似文献   

17.
以难处理混合铜矿为研究对象,该矿石铜氧化率和结合率分别为76.92%和39.16%,因为结合率较高,所以极难选别,单一的浮选法或者浸出法无法最大化地回收铜资源,采用浮选-浸出选冶联合法可以对铜资源高效回收.浮选作业采用一粗一扫一精的闭路试验流程,当磨矿细度为-74μm占80%,硫化钠用量为400 g/t,丁基黄药用量为...  相似文献   

18.
以印尼某地红土镍矿为原料,考察了浸出时间、浸出温度、硫酸浓度、液固比等因素对硫酸常压浸出镍、铁的影响。结果表明,硫酸浸出红土镍矿的适宜工艺参数为: 初始硫酸浓度300 g/L、液固比6∶1、搅拌速度300 r/min、浸出温度85 ℃、浸出时间240 min,此优化条件下红土镍矿中Ni浸出率97%,Fe浸出率83%。对浸出渣进行XRD、SEM分析表明,红土镍矿晶型较稳定,浸出后形貌无较大变化; 浸出渣主要成分为铁氧化物、硅氧化物和铁酸镍、铁酸镁。  相似文献   

19.
以硫铁矿为还原剂,开展了软锰矿-硫铁矿协同还原浸出实验研究,考察了搅拌速度、两矿质量比、液固比、初始硫酸浓度、反应时间及温度对锰浸出率的影响。结果表明,在搅拌速度300 r/min、液固比5、反应温度85 ℃、初始硫酸浓度100 g/L、硫铁矿与软锰矿两矿质量比20%、反应时间300 min时,锰浸出率达99.5%以上;浸出渣中主要物相为难溶物FeO(OH)、SiO2、ZnS、Si和FeS2等。  相似文献   

20.
江西某黄金冶炼厂的金浸出尾渣中Au的品位为2.7 g/t,具有较高的回收价值.但该浸出渣中有害杂质S、As的含量高达7.54%、1.98%,主要以黄铁矿和毒砂的形式存在,二者内部包裹的金颗粒在超细磨条件下也极难解离.为有效回收该尾矿渣中的金,基于试样性质,采用氧化焙烧—浸出的工艺处理该试样.浸出试验在溶液pH值为12、...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号