首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
In this article, the densimetric Froude number of the flow is estimated using the parameters of volumetric sediment concentration (CV), the relative depth of flow (d/R), dimensionless particle number (Dgr) and the overall sediment friction factor (λs). The particle swarm optimization (PSO) and imperialist competitive algorithms (ICA) were used to estimate the densimetric Froude number. To study the effects of sediment transport parameters on the densimetric Froude number, six different models are presented. The PSO algorithm with root mean square error (RMSE) = 0.014 and mean absolute percentage error (MAPE) = 5.1% present the results with a relatively good accuracy. The accuracy of the results presented for the selected model by the ICA algorithm is also in the form of RMSE = 0.007 and MAPE = 5.6%. Although both algorithms return good results in estimating the densimetric Froude number for the selected model, it should be mentioned that for all the six presented models ICA returns better results than PSO.  相似文献   

2.
微粒群优化算法在Theis公式参数识别中的应用   总被引:2,自引:0,他引:2  
采用一种微粒群优化算法来识别承压完整井非稳定地下水运动Theis公式中的水文地质参数。微粒群算法是一种新型的群体智能算法,它将每个个体看作在多维搜索空间中的一个没有重量和体积的微粒,并在搜索空间中以一定的速度飞行,该飞行速度由个体的飞行经验和群体的飞行经验进行动态调整。然后根据个体适应值大小运算,根据适应度函数对微粒的速度和位置进行进化,最终得到足够好的适应度值。本文采用微粒群算法可根据抽水试验资料快速反演Theis公式近似解析解中的水文地质参数。实例计算结果表明该微粒群算法计算速度快,在水文地质逆问题求解中值得推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号