共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
本文研究了基于统计特征及灰度共生矩阵的乳腺X线图像的特征提取方法,以及基于神经网络的算法在乳腺肿瘤检查和分类中的作用.结果显示该方法对良性与恶性肿瘤分类的准确率超过了75%.实验表明神经网络方法在图像分类中是有效的. 相似文献
3.
近年来,基于深度学习的运动模糊去除算法得到了广泛关注,然而单幅散焦图像去模糊算法鲜有研究。为针对性地解决单幅图像的散焦模糊问题,提出一种基于循环神经网络的散焦图像去模糊算法。首先级联两个残差网络,分别完成散焦图估计和图像去模糊;随后,为了保证散焦图和清晰图像的深度特征可以更好地跨阶段传播以及阶段内相互作用,在残差网络中引入LSTM(long short-term memory)循环层;最后,整个残差网络进行了多次迭代,迭代过程中网络参数共享。为了训练网络,制作了一个合成散焦图像数据集,每一张散焦图像都包含对应的清晰图像和散焦图。实验结果表明,该算法相较于对比算法在主客观图像质量评价上均有显著优势,在复原结果中具有更锐利的边缘和清晰的细节。对于真实双像素图像散焦模糊数据集DPD,该算法相比DPDNet-Single在峰值信噪比(PSNR)和结构相似性(SSIM)上分别提高了0.77 dB、5.6%,因此所提方法可以有效处理真实场景散焦模糊。 相似文献
4.
为提高图像识别与分类精度,引进BP神经网络,提出一种图像自动识别方法。使用计算机扫描图像,分割图像区域并去除图像中的滤波,重新拼接各个单元的图像,对图像进行预处理;引进BP神经网络,最小化输的图像与期望输出之间的差异;描述图像特征信息,实现基于BP神经网络的图像训练与特征提取;以提取的图像特征为参照,设计图像的分类与自动识别。实验结果表明,设计方法可以在提高图像识别分类准确率的基础上,提高识别过程中的收敛效率,实现对图像的高精度自动识别。 相似文献
5.
针对凹版印刷过程中运动图像检测的问题,根据目标图像周期出现的规律,提出分周期隔段采集图像序列,经二值化后用神经网络识别指定目标图像的方法。与现有方法相比,能在更高速的环境下找到目标图像,降低了对硬件的要求,仿真表明这种方法可以有效地找出运动中的指定图像。 相似文献
6.
为了实现自来水厂沉淀池加料系统的自动控制,针对矾花图像自动识别部分,提出一种采用纹理分析方法,提取矾花图像的纹理特征,然后组合这些特征,构造一种先级联再并联的多分类器组合结构,实现矾花图像的自动识别。实验证明,该算法准确度大、识别率高达97%,可靠性达99%,能满足实际系统的要求。 相似文献
7.
文中提出一种简约HJ神经网络(RHJNN),用于对旋转变形的图形进行校正。该神经网络具有较简单的结构,数值计算与理论分析表明该网络更具鲁棒性。相关的满幅校正策略是实现无差后续图像处理的必要与有效手段。 相似文献
8.
9.
数字图像在如今网络高速发展时代已成为重要的信息载体,而对图像信息的安全保护也成为安全领域的重要研究课题.图像秘密共享方案是一种基于门限的密码学方案,能够为多个用户提供一种保护图像秘密信息的方案.该方案将秘密图像加密成若干个影子图像,分配给不同的用户.当用户的个数达到门限值后,原始图像可以被重构,否则用户无法获得原始图像的任何信息.图像信息的分类和识别是图像秘密共享的前提和基础,卷积神经网络(convolutional neural network, CNN)在图像分类和识别中具有较高的准确性和较快的速度.将基于卷积神经网络的图像识别和分类与图像秘密共享结合起来,将深度学习工具应用于图像信息保护,可以提高基于传统人工图像识别的图像保护方案的效率.首先采用区域卷积神经网络(region CNN, RCNN)模型对图像进行识别,根据所包含的信息内容将图像分割成重要性级别不同的若干区域,然后在此基础上构造2种图像秘密共享方案,渐进式重构图像秘密共享方案以及具有重要影子图像的图像秘密共享方案.其中重要性级别较高的图像区域在图像重构中需要较高的门限,这一特性使得图像秘密共享方案能够适用于更多的应用场景.与传统的基于人工特征的图像识别方法相比,神经网络的引用能够提升图像分类和识别的效率,从而进一步提升了图像秘密共享的应用价值. 相似文献
10.
田萌 《计算技术与自动化》2022,41(1):123-128
针对当前X射线图像安检危险品识别方法未采集模糊静态图像目标,导致安检危险品图像呈现效果较差、危险品识别率较低、识别时间较长的问题,提出了基于VR技术的X射线图像安检危险品自动识别方法。通过X射线获取安检危险品成像,采用VR技术采集模糊静态图像目标,利用光学成像原理分层处理模糊静态图像目标,获取模糊静态图像目标亮度层和细... 相似文献
11.
目的 在脑肿瘤临床诊疗过程中,由于医疗资源稀缺与诊断效率偏低,迫切需要高精度的医学图像分割工具进行辅助诊疗。目前,使用卷积神经网络进行脑肿瘤图像分割已经成为主流,但是其对于脑肿瘤信息的利用并不充分,导致精度与效率并不完善,而且重新设计一个全新且高效的深度神经网络模型是一项成本高昂的任务。为了更有效提取脑肿瘤图像中的特征信息,提出了基于多层级并行神经网络的多模态脑肿瘤图像分割框架。方法 该框架基于现有的网络结构进行拓展,以ResNet(residual network)网络为基干,通过设计多层级并行特征提取模块与多层级并行上采样模块,对脑肿瘤的特征信息进行高效提取与自适应融合,增强特征信息的提取与表达能力。另外,受U-Net长连接结构的启发,在网络中加入多层级金字塔长连接模块,用于输入的不同尺寸特征之间的融合,提升特征信息的传播效率。结果 实验在脑肿瘤数据集BRATS2015(brain tumor segmentation 2015)和BRATS2018(brain tumor segmentation 2018)上进行。在BRATS2015数据集中,脑肿瘤整体区、核心区和增强区的平均Dice值分别为84%、70%和60%,并且分割时间为5 s以内,在分割精度和时间方面都超过了当前主流的分割框架。在BRATS2018数据集中,脑肿瘤整体区、核心区和增强区的平均Dice值分别为87%、76%和71%,对比基干方法分别提高8%、7%和6%。结论 本文提出多层级并行的多模态脑肿瘤分割框架,通过在脑肿瘤数据集上的实验验证了分割框架的性能,与当前主流的脑肿瘤分割方法相比,本文方法可以有效提高脑肿瘤分割的精度并缩短分割时间,对计算机辅助诊疗有重要意义。 相似文献
12.
施强 《电脑编程技巧与维护》2022,(10):134-137
基于BP神经网络的计算机图像识别模型能够有效识别收敛识别误差,随着人工智能神经网络的发展,图像识别技术无论在实时性还是准确性方面都有很大提升。基于计算机图像识别的意义,分析BP神经网络的计算机智能图像识别模型。由于BP神经网络与其他网络的融合算法相比,在性能和准确率上更加突出,由此提出了基于GA&BP深度神经网络算法的计算机图像识别优化模型,通过实验对比分析加以验证,证明优化模型收敛速度更快,识别准确更高,具有更加明显的应用优势。 相似文献
13.
基于纹理特征与BP神经网络的一类图像检索 总被引:6,自引:0,他引:6
1 引言随着网络通信及多媒体技术的发展,特别是因特网的广泛应用,图像作为一种越来越重要的信息载体得到了广泛的应用。融合图像理解技术,直接针对静止图像或视频帧的图像特征进行处理,在高度信息化的今天,已成为内容图像库中图像信息组织和管理不可 相似文献
14.
对未知的无线电信号的调制类型进行在线自动识别在军事对抗和频谱监控中有着非常重要的意义。提出了一种在线进行调制识别的系统模型,并给出一种基于神经网络的快速收敛分类器算法。仿真结果证实了该种方法的有效性。 相似文献
15.
李睿智 《计算机光盘软件与应用》2014,(1):263-264
本文提出了一种基于BP神经网络和多重特征的色情图像检测方法。用已知色情图像块作为BP神经网络的训练样本,再对待检测图像进行分块操作,并提取每个图像块的纹理、形状和颜色特征信息,并使用神经网络进行分类检测。经matlab实验仿真,本算法对色情图像的检测精度可以达到85%。 相似文献
16.
为了提高图像识别的全面性及准确性,研究了一种基于卷积神经网络(Convolutional Neural Network,CNN)的图像识别方法。该方法利用萤火虫算法获取分割阈值,实现图像目标和背景的分割;利用灰度共生矩阵和基于加速分割测试的特征(Features From Accelerated Segment Test,FAST)算法提取图像纹理和角点特征;以特征为输入,利用卷积神经网络实现目标类别识别。测试结果表明,设计的基于CNN的识别方法的F1分数为最大值,均在0.8以上,能够更全面、更准确地识别图像中的目标类型。 相似文献
17.
针对在灰度图像着色领域中,传统算法信息提取率不高、着色效果不理想的问题,提出了基于密集神经网络的灰度图像着色算法,以实现改善着色效果,让人眼更好地观察图片信息的目的。利用密集神经网络的信息提取高效性,构建并训练了一个端到端的深度学习模型,对图像中的各类信息及特征进行提取。训练网络时与原图像进行对比,以逐渐减小网络输出结果的信息、分类等各类型的损失。训练完成后,只需向网络输入一张灰度图片,即可生成一张颜色饱满、鲜明逼真的彩色图片。实验结果表明,引入密集网络后,可有效改善着色过程中的漏色、细节信息损失、对比度低等问题,所提算法着色效果较基于VGG网络及U-Net、双流网络结构、残差网络(ResNet)等性能优异的先进着色算法而言取得了显著的改进。 相似文献
18.
李睿智 《计算机光盘软件与应用》2014,(1)
本文提出了一种基于BP神经网络和多重特征的色情图像检测方法。用已知色情图像块作为BP神经网络的训练样本,再对待检测图像进行分块操作,并提取每个图像块的纹理、形状和颜色特征信息,并使用神经网络进行分类检测。经matlab实验仿真,本算法对色情图像的检测精度可以达到85%。 相似文献
19.
针对多幅图像的匹配和识别问题,提出了一种基于图结构的全自动识别与拼接方法.该方法能够根据用户输入的多幅无序图像,自动判别图像之间是否具有重叠部分,并对具有重叠的图像进行拼接.对输入的每一幅图像进行MOPS特征检测,通过k-d树的最近邻搜索完成不同图像特征之间的快速匹配.其次基于图像特征之间的对应关系使用RANSAC算法建立任意两幅图像之间的匹配模型,并用概率算法进行鲁棒校验.通过构建与图像匹配关系对应的无向连通图结构,实现多幅全景图像的自动识别.使用递归算法对无向连通图进行深度优先遍历,并用多频带融合算法消除拼接痕迹,合成相应的全景图像序列. 相似文献
20.
遥感图像分类是模式识别技术在遥感领域的具体应用,针对遥感图像处理中的分类问题,提出了一种基于卷积神经网络(convolutional neural networks,CNN)的遥感图像分类方法,并针对单源特征无法提供有效信息的问题,设计了一种多源多特征融合的方法,将遥感图像的光谱特征、纹理特征、空间结构特征等按空间维度以向量或矩阵的形式进行有效融合,以此训练CNN模型。实验表明,多源多特征相融合能够加快模型收敛速度,有效提高遥感图像的分类精度;与其他分类方法相比,CNN能够取得更高的分类精度,获得更优的分类效果。 相似文献