首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The strength of jointed rock mass is strongly controlled by the degree of interlock between its constituent rock blocks. The degree of interlock constrains the kinematic freedom of individual rock blocks to rotate and slide along the block forming joints. The Hoek–Brown (HB) failure criterion and the geological strength index (GSI) were developed based on experiences from mine slopes and tunneling projects in moderately to poorly interlocked jointed rock masses. It has since then been demonstrated that the approach to estimate the HB strength parameters based on the GSI strength scaling equations (called the ‘GSI strength equations’) tends to underestimate the confined peak strength of highly interlocked jointed rock masses (i.e. GSI > 65), where the rock mass is often non-persistently jointed, and the intact rock blocks are strong and brittle. The estimation of the confined strength of such rock masses is relevant when designing mine pillars and abutments at great depths, where the confining pressure is high enough to prevent block rotation and free sliding on block boundaries. In this article, a grain-based distinct element modeling approach is used to simulate jointed rock masses of various degrees of interlock and to investigate the influences of block shape, joint persistence and joint surface condition on the confined peak strengths. The focus is on non-persistently jointed and blocky (persistently jointed) rock masses, consisting of hard and homogeneous rock blocks devoid of any strength degrading defects such as veins. The results from this investigation confirm that the GSI strength equations underestimate the confined strength of highly interlocked and non-persistently jointed rock masses. Moreover, the GSI strength equations are found to be valid to estimate the confined strength of persistently jointed rock masses with smooth and non-dilatant joint surfaces.  相似文献   

2.
 岩体的地质强度指标(GSI)集中考虑岩体结构和结构面表面特征2个方面的因素,已被广泛地应用于岩体强度参数与变形参数的计算中。在GSI系统的基础上,采用残余GSI量化评价方法,通过对峰值地质强度指标GSI进行折减,以得到残余地质强度指标 ,据此来计算节理岩体的残余强度参数。首先,结合岩体分类指标法(RMi),在 和 的基础上探讨残余岩块体积 和残余节理条件系数 取值的确定方法;然后,由 和 计算出 ,据广义Hoek-Brown准则计算出节理岩体的残余强度参数,重点对4种典型岩体的残余强度取值进行分析,讨论残余岩体体积对岩体残余强度参数的影响;最后,通过对岩体原位剪切实验数据和一桥墩承台开挖边坡的稳定性反分析,证实基于 指标的节理岩体残余强度参数确定方法的合理性和可靠性,为节理岩体残余强度参数的确定提供一条新的思路。  相似文献   

3.
节理岩体表征单元体尺寸确定的数值模拟   总被引:1,自引:0,他引:1  
从节理岩体表征单元体的力学意义出发,在通过对某物理试验结果进行模拟以验证RFPA程序模拟节理岩体强度及破裂模式具有适用性的基础上,提出一种基于RFPA数值模拟确定节理岩体表征单元体的方法。该方法基于蒙特卡洛法生成二维节理裂隙网格,实现节理裂隙的表征,将其导入岩石破裂过程分析软件中,分析节理岩体弹性模量和单轴抗压、抗拉强度的尺寸效应和各向异性,并据此确定了节理岩体的表征单元体尺寸。最后,针对某采场围岩节理面统计参数,分析讨论节理岩体的尺寸效应和各向异性,通过综合分析确定了节理岩体的弹性模量、抗压强度和抗拉强度等参数,并得出其表征单元体的尺度为6 m×6 m,这为后续的岩石力学研究奠定基础。  相似文献   

4.
The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints). A synthetic rock mass modelling (SRM) approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM)-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN) modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD), joint spacing, areal fracture intensity (P21), and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI). The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness.  相似文献   

5.
This paper explores the potential implications of recent thinking in relation to rock mass strength for future tunnelling projects in Brisbane, Australia, particularly as they are constructed within deep horizons where the in situ stress magnitudes is larger. Rock mass failure mechanisms for the current tunnels in Brisbane are generally discontinuity controlled and the potential for stress-induced failure is relatively rare. For the road tunnels which have been constructed in Brisbane over the last 12 years, the strength of the more massive rock masses for continuum analysis has been estimated by the application of the Hoek-Brown (H-B) failure criterion using the geological strength index (GSI) to determine the H-B parameters mb, s and a. Over the last few years, alternative approaches to estimating rock mass strength for ‘massive to moderately jointed hard rock masses’ have been proposed by others, which are built on the work completed by E. Hoek and E.T. Brown in this area over their joint careers. This paper explores one of these alternative approaches to estimating rock mass strength for one of the geological units (the Brisbane Tuff), which is often encountered in tunnelling projects in Brisbane. The potential implications of these strength forecasts for future tunnelling projects are discussed along with the additional work which will need to be undertaken to confirm the applicability of such alternative strength criteria for this rock mass.  相似文献   

6.
 目前国际上普遍认为完整岩体的现场强度近似等于(0.4?0.1)?c,其中,?c为室内岩石单轴抗压强度。此外,也有学者建议原位岩体的破坏强度,即地下工程围岩的启裂强度,可等价于室内单轴压缩试验或现场微震监测确定的岩石裂隙初始的应力;其原理主要以基于Kirsch解析解或简化的数值模拟(光滑的开挖边界)来近似表达隧道开挖面上的最大切向应力?max。然而,这些方法均忽略了开挖边界的几何非规则性对计算结果的影响。经论证表明,若考虑开挖面的几何非规则性因素,完整岩体的现场破坏强度并不等于(0.4?0.1)?c,其破坏强度可高达(0.8?0.05)?c。以加拿大地下实验室Mine-by试验隧道为例,并以该隧道的实际断面形状为几何边界条件,采用有限元软件Phase 2模拟隧道围岩的渐进破坏过程。研究结果表明,当原位岩体强度为0.8?c时,模拟结果与实际观测结果具有很好的一致性。因此,忽略开挖边界的几何非规则性而解读的原位岩体强度(0.4?0.1)?c仅是“等价”强度值,其低估了岩体的实际强度。  相似文献   

7.
以正六棱柱型柱状节理岩体为研究对象,根据柱状节理的分布特性,在参考Ramamurthy非线性强度准则的基础上,引入节理系数表征节理对岩体强度的影响,建立正六棱柱型柱状节理岩体各向异性强度准则。该强度准则以幂指数形式反映柱状节理岩体的强度非线性。分析时首先针对正六棱柱型柱状节理岩体,研究节理系数的计算方法,然后结合模拟柱状节理岩体单轴和三轴压缩试验结果确定各向异性强度准则中的常数,在此基础上采用已有试验数据对该各向异性强度准则进行初步验证。结果表明:该各向异性强度准则能够较好地反映柱状节理岩体强度的各向异性和非线性,预测值与实测值比较吻合。  相似文献   

8.
9.
高应力下岩石非线性强度特性的试验验证   总被引:1,自引:6,他引:1  
 深埋工程岩体开挖后围岩的强度特性表现出明显的非线性特征。基于室内岩石三轴加载及卸荷力学试验成果,对高应力下岩石的非线性强度特性予以验证,并开展高应力下应力路径对强度参数影响规律研究。采用已有的二次抛物线型、双曲线型、幂函数型等型式的包络线来研究强度特征的非线性,结果表明,幂函数型Mohr准则能够作为在高应力加载和卸荷应力路径下的岩石破坏的强度判据。在低围压下(<10 MPa),三轴卸围压破坏强度要小于常规三轴强度;而在高围压下,前者略高于后者。内摩擦角的正切值与等效法向应力的函数关系表明岩样的实际内摩擦角并不是一个不变值,具有幂函数关系的非线性特征,在低应力下卸载破坏内摩擦角要比常规三轴压缩剪切内摩擦角略大,在高应力下则相反;根据Mohr准则中内摩擦角与理论破裂角之间的关系,随着应力增加它们的破裂角均呈非线性衰减并趋向π/4。  相似文献   

10.
The Hoek–Brown criterion was introduced in 1980 to provide input for the design of underground excavations in rock. The criterion now incorporates both intact rock and discontinuities, such as joints, characterized by the geological strength index (GSI), into a system designed to estimate the mechanical behaviour of typical rock masses encountered in tunnels, slopes and foundations. The strength and deformation properties of intact rock, derived from laboratory tests, are reduced based on the properties of discontinuities in the rock mass. The nonlinear Hoek–Brown criterion for rock masses is widely accepted and has been applied in many projects around the world. While, in general, it has been found to provide satisfactory estimates, there are several questions on the limits of its applicability and on the inaccuracies related to the quality of the input data. This paper introduces relatively few fundamental changes, but it does discuss many of the issues of utilization and presents case histories to demonstrate practical applications of the criterion and the GSI system.  相似文献   

11.
 根据建立的由岩体波速估算地质强度指标GSI和岩体扰动参数D的计算公式,引入Hoek-Brown准则,给出岩体波速预测岩体力学参数方法(简称岩体波速法)。以中缅油气管道(国内段)澜沧江跨域工程边坡岩体力学参数研究为例,并以室内岩石物理力学参数和场区声波测试数据为基础,采用岩体波速法和E. Hoek建议法预测场区的岩体力学参数。结果表明:岩体波速法和E. Hoek建议法所得的结果平均相对误差均较小,两者基本等效,数值模拟结果更进一步验证了工程应用效果的合理性。该方法在试验资料不足的情况下,能为岩体力学参数的快速评价提供一条新途径。  相似文献   

12.
There are a number of different methods used for estimating the bearing capacity in jointed rock masses. In this paper, the geological strength index (GSI) introduced by Hoek et al. (1995) was used to estimate the bearing capacity of the rock mass via rock mass rating (RMR). An empirical relationship is proposed to estimate the bearing capacity of the rock mass using the GSI-dependent toughness factor (TF). The proposed formula was correlated with bearing capacity equations used in the literature. The regression analyses showed exponential relationships with a high correlation coefficient.  相似文献   

13.
To efficiently link the continuum mechanics for rocks with the structural statistics of rock masses,a theoretical and methodological system called the statistical mechanics of rock masses(SMRM)was developed in the past three decades.In SMRM,equivalent continuum models of stressestrain relationship,strength and failure probability for jointed rock masses were established,which were based on the geometric probability models characterising the rock mass structure.This follows the statistical physics,the continuum mechanics,the fracture mechanics and the weakest link hypothesis.A general constitutive model and complete stressestrain models under compressive and shear conditions were also developed as the derivatives of the SMRM theory.An SMRM calculation system was then developed to provide fast and precise solutions for parameter estimations of rock masses,such as full-direction rock quality designation(RQD),elastic modulus,Coulomb compressive strength,rock mass quality rating,and Poisson’s ratio and shear strength.The constitutive equations involved in SMRM were integrated into a FLAC3D based numerical module to apply for engineering rock masses.It is also capable of analysing the complete deformation of rock masses and active reinforcement of engineering rock masses.Examples of engineering applications of SMRM were presented,including a rock mass at QBT hydropower station in northwestern China,a dam slope of Zongo II hydropower station in D.R.Congo,an open-pit mine in Dexing,China,an underground powerhouse of Jinping I hydropower station in southwestern China,and a typical circular tunnel in Lanzhou-Chongqing railway,China.These applications verified the reliability of the SMRM and demonstrated its applicability to broad engineering issues associated with jointed rock masses.  相似文献   

14.
在非连续变形分析方法中,可用虚节理表示岩石破坏过程中潜在的破坏路径,因此断续节理中节理面开裂、扩展、贯通过程认为是虚节理(岩桥)向实节理转化的过程,这一过程伴随着虚节理(岩桥)力学性质参数的弱化,且弱化程度受到虚节理向实节理转化程度的影响。因此,利用表征虚节理向实节理转化程度的虚节理连通率对虚节理力学性质参数的弱化规律进行研究,得出力学性质参数弱化函数;在此基础上对Jennings强度准则和最大抗拉强度准则进行处理,提出应用于非连续变形分析计算的断续节理强度形式;最后,将虚节理力学性质参数弱化规律和处理后的断续节理强度表达式运用于非连续变形分析计算程序中,实现对断续节理扩展过程的模拟算法。并通过剪切试验计算结果与室内试验结果的比较,验证该算法的正确性。  相似文献   

15.
The rock mass failure process is characterized by several distinct deformation stages which include crack initiation, crack propagation and coalescence. It is important to know the stress levels associated with these deformation stages for engineering design and practice.Extensive theoretical, experimental and numerical studies on the failure process of intact rocks exist. It is generally understood that crack initiation starts at 0.3 to 0.5 times the peak uniaxial compressive stress. In confined conditions, the constant-deviatoric stress criterion was found to describe the crack initiation stress level.Here, generalized crack initiation and crack damage thresholds of rock masses are proposed. The crack initiation threshold is defined by σ1−σ3=A σcm and the crack damage threshold is defined by σ1−σ3=B σcm for jointed rock masses, where A and B are material constants and σcm is the uniaxial compressive strength of the rock masses. For a massive rock mass without joints, σcm is equal to σcd, the long-term uniaxial strength of intact rock. After examining data from intact rocks and jointed rock masses, it was found that for massive to moderately jointed rock masses, the material constants A and B are in the range of 0.4 to 0.5, 0.8 to 0.9, respectively, and for moderately to highly jointed rock masses, A and B are in the range of 0.5 to 0.6, 0.9 to 1.0, respectively. The generalized crack initiation and crack damage thresholds, when combined with simple linear elastic stress analysis, assist in assessing the rock mass integrity in low confinement conditions, greatly reducing the effort needed to obtain the required material constants for engineering design of underground excavations.  相似文献   

16.
 岩体中存在着大量的节理裂隙等不连续面,这些不连续面对岩体的强度起着重要的作用,岩体可能会沿着这些不连续面发生破坏。在分析中间主应力对岩体强度影响的基础上,验证统一强度理论,并在此基础上,建立可以反映中间主应力变化的强度参数,同时采用试验对其进行验证。针对含有不连续面的岩体,分析不连续面上的应力分布,建立复杂应力条件下的岩体各向异性强度准则,并针对该强度的特殊情况作简化,分析适用条件。采用节理岩体的真三轴试验对其验证,结果表明所建立的各向异性强度准则可以恰当的反映岩体的强度。分析中间主应力,结构面倾角和走向对岩体强度的影响。  相似文献   

17.
 针对节理岩体非线性破坏特征,发展基于Hoek-Brown破坏准则的临界滑动场理论进行节理岩体地基承载力的计算。首先将Hoek-Brown准则的剪切强度逐点等效到Mohr-Coulomb强度线上,求得每点的瞬时内摩擦角和瞬时黏聚力;在此基础上,改进基于Mohr-Coulomb准则的临界滑动场理论,建立新的迭代算法,将Hoek-Brown强度准则与临界滑动场理论结合起来,求解被动土压力和地基承载力。同时,综合分析GSI和mi值对地基承载力的影响。算例对比分析结果表明,该方法能迅速准确地确定节理岩体地基最危险破坏滑面并得到相应的地基极限承载力值。  相似文献   

18.
岩石破损过程强度变化规律实测研究   总被引:3,自引:3,他引:0  
 岩石材料强度会随着破裂发展而逐渐衰减,详细介绍自行设计的岩石强度衰减测试方法,试验思路、试件制作及关键技术;通过自行设计的直剪试验,测得常规压缩试验破裂得到的不规则损伤岩块在直剪过程中的剪应力–压应力关系曲线,由其拟合得到库仑强度曲线,并与已有(单、三轴)压缩试验数据线性拟合得到的莫尔强度包络线进行比较,分析讨论岩石在破损过程中材料强度(黏聚力和内摩擦角)变化规律,澄清现有黏聚力和内摩擦角变化规律2种完全相对立观点的适用范围。研究结果表明,由完整岩样进行单、三轴试验测得的黏聚力明显大于不规则岩块直剪试验结果,这主要是岩样在单、三轴压缩破坏过程中产生的损伤所致,而不是试验方法所导致的偏差;黏聚力反映的是岩石本质强度特性,受不同应力状态的影响较小。岩样单、三轴压缩试验测得的内摩擦角小于岩块直剪试验结果,这主要是受到不同应力状态和岩石缺陷分布的影响。在岩石破损过程中,内摩擦角随损伤的发展具有先快速增大至最大值后大幅降低直至保持一定趋势不变的规律。内摩擦角反映的是岩石摩擦强度特性,受不同应力状态的影响较大。黏聚力对应力水平的敏感程度远小于内摩擦角。岩石在破裂前后自身材料强度会产生明显衰减。  相似文献   

19.
Impact-induced damage to jointed rock masses has important consequences in various mining and civil engineering applications. This paper reports a numerical investigation to address the responses of jointed rock masses subjected to impact loading. It also focuses on the static and dynamic properties of an intact rock derived from a series of laboratory tests on meta-sandstone samples from a quarry in Nova Scotia, Canada. A distinct element code (PFC2D) was used to generate a bonded particle model (BPM) to simulate both the static and dynamic properties of the intact rock. The calibrated BPM was then used to construct large-scale jointed rock mass samples by incorporating discrete joint networks of multiple joint intensities into the intact rock matrix represented by the BPM. Finally, the impact-induced damage inflicted by a rigid projectile particle on the jointed rock mass samples was determined through the use of the numerical model. The simulation results show that joints play an important role in the impact-induced rock mass damage where higher joint intensity results in more damage to the rock mass. This is mainly attributed to variations of stress wave propagation in jointed rock masses as compared to intact rock devoid of joints.  相似文献   

20.
Combining with empirical method, laboratory test and numerical simulation, a comprehensive system was presented to determine the mechanical parameters of jointed rock masses. The system has the following four functions: (1) Based on the field investigation of joints, the system can consider rock mass structures, by using network simulation technology. (2) Rock samples are conducted by numerical simulation with the input engineering mechanical parameters of rocks and joints obtained from laboratory tests. (3) The whole stress-strain curve of jointed rock masses under certain normal stress can be plotted from numerical simulation, and then the shear strength parameters of jointed rock masses can be obtained from the whole stress-strain curves under different normal stresses. (4) The statistical values of mechanical parameters of jointed rock masses can be determined according to numerical simulation. Based on the statistical values, combining with engineering experiences and geological investigations, the comprehensive mechanical parameters of jointed rock masses can be achieved finally. Several cases are presented to prove the engineering feasibility and suitability of this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号