首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strength of jointed rock mass is strongly controlled by the degree of interlock between its constituent rock blocks. The degree of interlock constrains the kinematic freedom of individual rock blocks to rotate and slide along the block forming joints. The Hoek–Brown (HB) failure criterion and the geological strength index (GSI) were developed based on experiences from mine slopes and tunneling projects in moderately to poorly interlocked jointed rock masses. It has since then been demonstrated that the approach to estimate the HB strength parameters based on the GSI strength scaling equations (called the ‘GSI strength equations’) tends to underestimate the confined peak strength of highly interlocked jointed rock masses (i.e. GSI > 65), where the rock mass is often non-persistently jointed, and the intact rock blocks are strong and brittle. The estimation of the confined strength of such rock masses is relevant when designing mine pillars and abutments at great depths, where the confining pressure is high enough to prevent block rotation and free sliding on block boundaries. In this article, a grain-based distinct element modeling approach is used to simulate jointed rock masses of various degrees of interlock and to investigate the influences of block shape, joint persistence and joint surface condition on the confined peak strengths. The focus is on non-persistently jointed and blocky (persistently jointed) rock masses, consisting of hard and homogeneous rock blocks devoid of any strength degrading defects such as veins. The results from this investigation confirm that the GSI strength equations underestimate the confined strength of highly interlocked and non-persistently jointed rock masses. Moreover, the GSI strength equations are found to be valid to estimate the confined strength of persistently jointed rock masses with smooth and non-dilatant joint surfaces.  相似文献   

2.
There are a number of different methods used for estimating the bearing capacity in jointed rock masses. In this paper, the geological strength index (GSI) introduced by Hoek et al. (1995) was used to estimate the bearing capacity of the rock mass via rock mass rating (RMR). An empirical relationship is proposed to estimate the bearing capacity of the rock mass using the GSI-dependent toughness factor (TF). The proposed formula was correlated with bearing capacity equations used in the literature. The regression analyses showed exponential relationships with a high correlation coefficient.  相似文献   

3.
Combining with empirical method, laboratory test and numerical simulation, a comprehensive system was presented to determine the mechanical parameters of jointed rock masses. The system has the following four functions: (1) Based on the field investigation of joints, the system can consider rock mass structures, by using network simulation technology. (2) Rock samples are conducted by numerical simulation with the input engineering mechanical parameters of rocks and joints obtained from laboratory tests. (3) The whole stress-strain curve of jointed rock masses under certain normal stress can be plotted from numerical simulation, and then the shear strength parameters of jointed rock masses can be obtained from the whole stress-strain curves under different normal stresses. (4) The statistical values of mechanical parameters of jointed rock masses can be determined according to numerical simulation. Based on the statistical values, combining with engineering experiences and geological investigations, the comprehensive mechanical parameters of jointed rock masses can be achieved finally. Several cases are presented to prove the engineering feasibility and suitability of this system.  相似文献   

4.
Several constructions in the field of civil engineering quite often need to deal with rocks.Strength behaviour of rock intersected by a discontinuity or a set of discontinuities has been a topic of keen interest for engineering community.The popular attributes of discontinuities that have been given due importance are their frequency,orientation and surface characteristics.Non-persistency,however,has been given little attention.This article presents an experimental study wherein focus has been made on the effect of non-persistency of the joint on the uniaxial compressive strength(UCS) of a model rock for various geometries such as orientation,discontinuity length ratio and number of joint segments.The applicability of single plane of weakness theory(SPWT) to assess the strength of jointed specimens has also been evaluated.It has been noticed that SPWT captures the strength behaviour only for a narrow range of discontinuity orientations.As an improvement,an approach is suggested by extending concepts of degree of persistence and joint factor to have a better understanding towards strength behaviour of rocks intersected by non-persistent joints.  相似文献   

5.
Tunnel behaviour and support associated with the weak rock masses of flysch   总被引:1,自引:0,他引:1  
Flysch formations are generally characterised by evident heterogeneity in the presence of low strength and tectonically disturbed structures. The complexity of these geological materials demands a more specialized geoengineering characterisation. In this regard, the paper tries to discuss the standardization of the engineering geological characteristics, the assessment of the behaviour in underground excava- tions, and the instructions-guidelines for the primary support measures for flysch layer qualitatively. In order to investigate the properties of flysch rock mass, 12 tunnels of Egnatia Highway, constructed in Northern Greece, were examined considering the data obtained from the design and construction records. Flysch formations are classified thereafter in 11 rock mass types (I-XI), according to the siltstone -sandstone proportion and their tectonic disturbance. A special geological strength index (GSI) chart for heterogeneous rock masses is used and a range of geotechnical parameters for every flysch type is presented. Standardization tunnel behaviour for every rock mass type of flysch is also presented, based on its site-specific geotechnical characteristics such as structure, intact rock strength, persistence and complexity of discontinuities. Flysch, depending on its types, can be stable even under noticeable overburden depth, and exhibit wedge sliding and wider chimney type failures or cause serious deformation even under thin cover. Squeezing can be observed under high overburden depth. The magnitude of squeezing and tunnel support requirements are also discussed for various flysch rock mass types under different overburdens. Detailed principles and guidelines for selecting immediate support mea- sures are proposed based on the principal tunnel behaviour mode and the experiences obtained from these 12 tunnels. Finally, the cost for tunnel support from these experiences is also presented.  相似文献   

6.
分析了断续节理岩体动态疲劳损伤的复杂性,阐明了疲劳损伤研究的近似处理方法。基于剩余应变强度理论和线性退化准则讨论了断续节理岩体动态疲劳损伤累积过程。研究了岩体破裂概率与疲劳损伤的等效性,建立了疲劳损伤变量与分形维数间的定量关系。最后通过动态疲劳实验验证了结论的正确性。  相似文献   

7.
The Hoek–Brown criterion was introduced in 1980 to provide input for the design of underground excavations in rock. The criterion now incorporates both intact rock and discontinuities, such as joints, characterized by the geological strength index (GSI), into a system designed to estimate the mechanical behaviour of typical rock masses encountered in tunnels, slopes and foundations. The strength and deformation properties of intact rock, derived from laboratory tests, are reduced based on the properties of discontinuities in the rock mass. The nonlinear Hoek–Brown criterion for rock masses is widely accepted and has been applied in many projects around the world. While, in general, it has been found to provide satisfactory estimates, there are several questions on the limits of its applicability and on the inaccuracies related to the quality of the input data. This paper introduces relatively few fundamental changes, but it does discuss many of the issues of utilization and presents case histories to demonstrate practical applications of the criterion and the GSI system.  相似文献   

8.
The aim of this paper is to estimate the uniaxial compressive strength(UCS) of rocks with different characteristics by using genetic expression programming(GEP).For this purpose,five different types of rocks including basalt and ignimbrite(black,yellow,gray,brown) were prepared.Values of unit weight,water absorption by weight,effective porosity and UCS of rocks were determined experimentally.By using these experimental data,five different GEP models were developed for estimating the values of UCS for different rock types.Good agreement between experimental data and predicted results is obtained.  相似文献   

9.
10.
基于等效连续介质模型 ,应用Taylor展开法分析裂隙岩体渗透性的随机性与裂隙基本几何参数随机性的关系 ,然后用一阶Taylor展开随机有限元法分析裂隙岩体渗流场的随机性。数值分析表明 :隙宽的随机性对渗流场的影响最大 ,裂隙的迹长次之 ,间距的影响最小。  相似文献   

11.
This paper presents the results of ongoing research carried out by the author exploring methods to provide a more robust estimate of rock mass properties specifically for use in tunnel design. Data from various large-scale rock mass failures are introduced, including coal pillars. The damage-initiation,spalling-limit approach is compared to the coal pillar database. New comparisons of estimating the geological strength index(GSI) and relationships to estimate the Hoeke Brown failure criterion parameters, mb, s and a, are presented.  相似文献   

12.
13.
The high sedimentological variability of gypsum rocks has the effect that a univocal characterization of this material is not easy to establish. This is particularly true from the geomechanical point of view: when the mechanical properties of gypsum rocks are requested, it is therefore necessary to undertake detailed characterization analyses. Common facies of gypsum was observed in the Upper Miocene evaporitic succession (Messinian Salinity Crisis) within the whole Mediterranean Basin. In this work, mechanical tests were conducted on a site-specific facies, represented by the microcrystalline branching selenite. The tested samples came from the Monferrato area (northwestern Italy). Uniaxial compressive strength (UCS) tests were performed in order to obtain reference mechanical parameters. More rapid and economic point load test (PLT) and ultrasonic pulse velocity (UPV) measurements were additionally performed to verify their applicability as complementary/alternative methods for site characterization. Rock-type specific PLT-UCS and UPV-UCS relationships were established. A wide dispersion of the mechanical parameters was observed due to the heterogeneities of the studied material. Consequently, compositional, textural and microstructural observations on selected samples were performed. Two main material classes were recognized based on average grain size and total gypsum content, underlining the significant influence of the grain sorting on the measured mechanical properties.  相似文献   

14.
15.
The uniaxial compressive strength(UCS) of rock is an important parameter required for design and analysis of rock structures,and rock mass classification.Uniaxial compression test is the direct method to obtain the UCS values.However,these tests are generally tedious,time-consuming,expensive,and sometimes impossible to perform due to difficult rock conditions.Therefore,several empirical equations have been developed to estimate the UCS from results of index and physical tests of rock.Nevertheless,numerous empirical models available in the literature often make it difficult for mining engineers to decide which empirical equation provides the most reliable estimate of UCS.This study evaluates estimation of UCS of rocks from several empirical equations.The study uses data of point load strength(Is(50)),Schmidt rebound hardness(SRH),block punch index(BPI),effective porosity(n) and density(ρ)as inputs to empirically estimate the UCS.The estimated UCS values from empirical equations are compared with experimentally obtained or measured UCS values,using statistical analyses.It shows that the reliability of UCS estimated from empirical equations depends on the quality of data used to develop the equations,type of input data used in the equations,and the quality of input data from index or physical tests.The results show that the point load strength(Is(50)) is the most reliable index for estimating UCS among the five types of tests evaluated.Because of type-specific nature of rock,restricting the use of empirical equations to the similar rock types for which they are developed is one of the measures to ensure satisfactory prediction performance of empirical equations.  相似文献   

16.
The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints). A synthetic rock mass modelling (SRM) approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM)-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN) modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD), joint spacing, areal fracture intensity (P21), and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI). The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness.  相似文献   

17.
 岩体的地质强度指标(GSI)集中考虑岩体结构和结构面表面特征2个方面的因素,已被广泛地应用于岩体强度参数与变形参数的计算中。在GSI系统的基础上,采用残余GSI量化评价方法,通过对峰值地质强度指标GSI进行折减,以得到残余地质强度指标 ,据此来计算节理岩体的残余强度参数。首先,结合岩体分类指标法(RMi),在 和 的基础上探讨残余岩块体积 和残余节理条件系数 取值的确定方法;然后,由 和 计算出 ,据广义Hoek-Brown准则计算出节理岩体的残余强度参数,重点对4种典型岩体的残余强度取值进行分析,讨论残余岩体体积对岩体残余强度参数的影响;最后,通过对岩体原位剪切实验数据和一桥墩承台开挖边坡的稳定性反分析,证实基于 指标的节理岩体残余强度参数确定方法的合理性和可靠性,为节理岩体残余强度参数的确定提供一条新的思路。  相似文献   

18.
The deformation modulus of a rock mass is an important parameter to describe its mechanical behavior.In this study,an analytical method is developed to determine the deformation modulus of jointed rock masses,which considers the mechanical properties of intact rocks and joints based on the superposition principle.Due to incorporating the variations in the orientations and sizes of joint sets,the proposed method is applicable to the rock mass with persistent and parallel joints as well as that with nonpersistent and nonparallel joints.In addition,an anisotropy index AIdmfor the deformation modulus is defined to quantitatively describe the anisotropy of rock masses.The range of AIdmis from 0 to 1,and the more anisotropic the rock mass is,the larger the value of AIdmwill be.To evaluate the proposed method,20 groups of numerical experiments are conducted with the universal distinct element code(UDEC).For each experimental group,the deformation modulus in 24 directions are obtained by UDEC(numerical value)and the proposed method(predicted value),and then the mean error rates are calculated.Note that the mean error rate is the mean value of the error rates of the deformation modulus in 24 directions,where for each direction,the error rate is equal to the ratio of numerical value minus predicted value to the numerical value.The results show that(i)for different experimental groups,the mean error rates vary between 5.06%and 22.03%;(ii)the error rates for the discrete fracture networks(DFNs)with two sets of joints are at the same level as those with one set of joints;and(iii)therefore,the proposed method for estimating the deformation modulus of jointed rock masses is valid.  相似文献   

19.
Appropriate rock characterization is beneficial in providing a reliable judgment on rock properties which is crucial for the design process of rock engineering applications. However, it can be difficult to obtain consistent mechanical parameters due to substantial variations in rock properties. In this research,uniaxial compression tests on dolerite specimens collected from a gold mine in Western Australia showed substantial scatter in the results. Rock categorization based on the P-wave velocities is as accurate as the thin section analysis, which suggests that they can be used together to gain a more accurate initial understanding of the rock types before any laboratory testing. The quality of specimen preparation and rockemachine interaction greatly affect the test results. For instance, non-parallelness of loading platens can lead to considerable scatter of the testing results, which would be perceived as rock variability. It is suggested that the current testing standards should be modified towards a better control of the loading machine performance and equipment precision. Finally, the possibility of pre-existing microcracks in rock, neither detected by the thin section analysis nor by the ultrasonic measurement,must be examined by computed tomography(CT) scanning as they can affect the test results. This study will enhance our knowledge about the sources of variability in laboratory test results of rock which is essential for obtaining reliable data.  相似文献   

20.
依据最小余能原理,在考虑节理岩体中锚杆剪切变形的基础上,分析了节理面水平剪切位移与锚杆轴向及切向变形之间的关系。结合锚杆受力特点拟定了锚杆屈服模式的判定流程。建立了考虑"等效剪切面积"的加锚节理面抗剪强度理论计算模型,并通过室内物理试验验证了理论计算模型的准确性。讨论了锚杆倾角、围岩抗压强度、锚杆直径、法向应力等因素对加锚节理面抗剪强度的影响规律。结果表明:所建立的锚杆剪切力学模型能够较好的反映锚杆轴向力及剪切力对节理面抗剪强度的贡献;考虑"等效剪切面积"的加锚节理面抗剪强度计算结果与试验结果较为吻合;锚杆倾角及围岩抗压强度越大,锚杆轴向力越小,剪切力越大;锚杆直径增大,锚杆轴向力及剪切力都会增大;节理面法向应力会显著影响剪胀效应,法向应力越大,节理面抗剪强度越高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号