共查询到19条相似文献,搜索用时 125 毫秒
1.
针对某电网公司22台变压器油中金属钝化剂不足的问题,采用自主研发的金属钝化剂添加装置添加金属钝化剂,并通过定期取样检测金属钝化剂含量和腐蚀性硫含量对添加效果进行验证.结果表明:添加金属钝化剂可以有效缓解腐蚀性硫对变压器的腐蚀,并指出了添加金属钝化剂过程中防止漏油、防止空气混入、控制注入流量及防止污染物进入等关键性问题. 相似文献
2.
相关研究表明,向油浸式电力变压器中添加金属钝化剂会导致油中溶解气体生成异常,为更好地了解油纸绝缘中苯并三氮唑类钝化剂的降解产气过程,指导绝缘油变压器故障诊断,选用在油浸式电力变压器中广泛使用的金属钝化剂——苯并三氮唑(Benzotriazole,BTA),在分子模拟环境下构建BTA分子模拟体系,基于ReaxFF反应力场对2000~3000K下BTA分子模拟体系的热解过程进行分子动力学模拟,并进一步结合BTA的热重试验分析与油纸绝缘中BTA在热场作用下的试验研究,从微观与宏观两个层面综合分析油纸绝缘中BTA的降解产气机制。仿真结果表明,BTA热解会生成小分子烃类自由基、小分子烃类化合物以及H·、N·等自由基,最终形成低分子烃类气体与H2、N2、NH3等无机产物。宏观试验结果表明,BTA随温度的升高不断发生热解,油中BTA的加入会导致油中溶解气体生成异常,其中H2、CO2、CO含量明显上升,但总烃含量反而下降。结合微观分子模拟仿真分析、油中溶解气体及绝缘油相关理化参量的宏观变化规律... 相似文献
3.
采用ASTM D1275-B腐蚀性硫检测方法和扫描电子显微镜技术,研究变压器绝缘油硫腐蚀的分析方法。对变压器绝缘油进行腐蚀性硫检测,判断油中有无腐蚀性硫;对硫腐蚀的铜片进行形貌和能谱分析,测量腐蚀产物中硫含量和腐蚀产物层的厚度。测量结果表明,硫腐蚀程度随硫含量和产物层厚度的增加而增大。变压器绝缘油硫腐蚀的形貌和能谱分析,弥补了腐蚀性硫检测方法在判断硫腐蚀程度方面的不足,该方法可以判断硫腐蚀程度,还能够判断腐蚀性硫检测结果的准确性,因此ASTM D1275-B法结合扫描电子显微镜技术是分析变压器绝缘油硫腐蚀的有效方法。 相似文献
4.
5.
6.
7.
8.
9.
10.
目前对钝化剂防护有效性的研究主要集中在单一硫化物方面,为此文中探究了含有多重腐蚀性硫情况下不同钝化剂防护效果差异以及钝化剂对油品质量的影响。采用含有多种腐蚀性硫化物的福建水口变电站运行油在150℃下进行加速老化试验,通过比较TTA、Irgamet39、T571这3种钝化剂在多重腐蚀性硫并存环境中的防护有效性,获得了3种钝化剂的最佳添加量。通过测试添加最佳浓度钝化剂后的新油及运行油的工频击穿电压、介质损耗因数、体积电阻率以及水分含量,对比分析了3种钝化剂对油品质量的影响。研究结果表明:3种钝化剂中,TTA的防护效果最佳,质量分数为50×10-6即可保护铜片免受侵蚀,其它两种钝化剂即使质量分数达到200×10-6也无法做到完全防护,只能延缓铜片受到的侵蚀。Irgamet39的加入对油样击穿电压、介质损耗因数、体积电阻率、油中水分等特征参量影响最小,T571钝化剂次之,TTA因其难溶于油,即使充分搅拌后仍然会对油品质量产生较大影响。综合考虑钝化剂对油品质量的影响与经济性,推荐在变压器运行一段时间之后,向油中添加100×10-6... 相似文献
11.
The influencing factors (temperature, electric field, and oxygen) of sulfur attack in transformer oil are studied through comparative tests on new oil, oil in service, and these two oils with the deactivator additive BTA (benzotriazole, C6H4N3H). The influence of these factors on the chemical reaction between copper and corrosive sulfur is analyzed in further. The results show that temperature, electric field, and oxygen can promote the reaction between copper and corrosive sulfur. Moreover, oxygen also accelerates the aging of the insulating oil. On the contrary, recharging nitrogen can remove oxygen and reduce sulfur's corrosive activity. Adding the BTA deactivator can also prevent corrosion, even during the accelerated aging of oil with oxygen. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. 相似文献
12.
13.
Sigemitsu Okabe Masanori Kotoh Motoo Tsuchie Tsuyoshi Amimoto 《Electrical Engineering in Japan》2011,176(4):26-33
The mechanism of the increase in the electrostatic charging tendency (ECT) of insulating oil and causative compounds were investigated by accelerated deterioration tests with the addition of various compounds. Although the ECT of the insulating oil was almost constant when only sulfoxide compounds were added, a marked increase was observed when either hydrochloric acid or moisture, which was considered to be generated by the aging of insulating oil, was also added to oil containing sulfoxide compounds. It is assumed that the sulfonium ion, which is generated by the reaction between sulfoxide compounds and hydrogen ion, is the compound that directly contributes to the increase in the ECT. Hydrogen ions can be supplied from organic acids generated by the oxidation of hydrocarbons in aging insulating oil. It is considered that the increase in the ECT of insulating oil is caused by the generation of sulfoxides by the oxidation of sulfide, which are present in fresh oil (originating compounds), and the generation of sulfonium ions by a reaction between sulfoxide and hydrogen ions, which are formed during aging. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 176(4): 26–33, 2011; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21113 相似文献
14.
Takashi Ito Yoshiyuki Morishima 《IEEJ Transactions on Electrical and Electronic Engineering》2009,4(3):422-424
In order to evaluate corrosive sulfur in insulating oil quantitatively, wave length dispersive X-ray (WDX) technique has been reported (1) . Using this technique, antioxidant 2,6-di-tert-butyl-p-cresol (DBPC) was found to be effective to suppress corrosion caused by dibenzyl disulfide (DBDS). The effect of corrosion prevention continues for a long term when a certain amount of DBPC is added to oil. The durability of DBPC was also evaluated by HPLC. It is possible to add relatively a good deal of DBPC to oil because DBPC has higher solubility than passivator and little effect on dielectric strength. Furthermore, DBPC was used with passivator simultaneously, and corrosion control time was far extended by their synergy effect. Copyright © 2009 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. 相似文献
15.
矿物绝缘油中腐蚀活性较强的硫化物已被证实会诱发油浸式电力设备绝缘故障,在绝缘油精炼过程中会被去除。部分非活性硫因其高效抗氧化性保留于矿物绝缘油中以提高油品的氧化安定性。然而,非活性硫在油浸式电力设备运行条件下的活化问题及其对绝缘性能造成的影响并未得到关注。本文针对矿物绝缘油中的典型非活性硫噻吩类硫化物,聚焦油纸绝缘中非活性硫诱发绕组腐蚀的反应机理。采用材料物相分析方法探究噻吩类硫化物的热裂解产物,结合热解动力学分析方法,分析噻吩类硫化物在不同升温速率下的活化能变化规律,并开展非活性硫噻吩类硫化物在油纸绝缘热场作用下的试验研究。热裂解解气相色谱、质谱以及热解傅里叶红外光谱结果表明,噻吩类硫化物(噻吩、苯并噻吩、二苯并噻吩)在热解过程中的主要活化产物为具有极强腐蚀性与挥发性的H2S。不同热解升温速率下,噻吩类硫化物的热重和微分热重曲线形状基本一致,其中噻吩最容易发生热解、其次是苯并噻吩、最后为二苯并噻吩。在油纸绝缘低温过热条件下,由于体系能量的不断积累,导致非活性硫噻吩类硫化物会发生活化进而生成低分子强腐蚀性硫化物,加剧了油品腐蚀性,最终导致油纸绝缘发生硫腐蚀。 相似文献
16.
变压器在制造、运行和维修等过程中,其内部绝缘油难免会引入金属颗粒,为探究金属颗粒对油纸绝缘性能的影响,文中搭建并调试了油纸绝缘雷电冲击放电试验平台等,开展了金属颗粒对绝缘油流注发展特性影响试验研究,研究了不同浓度金属颗粒对绝缘油流注起始电压与发展过程中形态的影响,并通过COMSOL仿真平台进行验证。结果表明,金属颗粒会促进油中流注的起始与发展过程,流注停止长度和发展速度与颗粒浓度呈正相关,而绝缘油流注起始电压与击穿电压与颗粒浓度呈负相关,金属颗粒的引入会使得流注形态更加发散。分析认为油中金属颗粒与流注的相互作用是降低流注起始电压,加速流注发展,进而降低绝缘油击穿电压的主要原因。 相似文献
17.
18.
19.
《IEEJ Transactions on Electrical and Electronic Engineering》2017,12(4):484-490
Problems due to discharge by charged metal particles in insulating oil under flow state are examined in this study. The motion characteristics of a charged metal particle in a horizontal transformer oil tract are investigated, and a mechanical model of a charged metal particle under flowing oil and an AC field is proposed. The particle's equations of motion are numerically solved using the fourth‐order Runge–Kutta computational algorithm. The trajectory of a spherical iron particle in typical motion state under flowing oil and AC field is simulated. The influence on the motion characteristics of a charged metal particle in terms of the oil flow rate, electric field strength of the oil tract, particle scale, initial state, and particle rotation is analyzed. Results reveal that when a charged metal particle is moving fast along the direction of oil tract flow, reciprocating oscillation simultaneously occurs in the vertical direction. Its trajectory is significantly affected by the oil flow rate, the electric field strength of the oil tract, particle scale, initial state, and particle rotation. Moreover, the degree of oscillation of the charged metal particle may be the main cause of degradation of the insulating oil under flow state. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. 相似文献