首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
碱渣和细铁尾矿属污染性大宗固体废弃物,为了确定以它们为主要原料制备高强环保陶粒的可能性,进行了核壳结构烧结陶粒的制备工艺条件研究,并对主要工艺条件下烧结陶粒的矿物成分进行了分析。结果表明:①铁尾矿和碱渣用量增大,煅烧温度升高,煅烧时间延长,核壳结构烧结陶粒的吸水率、膨胀率均升高,筒压强度和堆积密度总体均降低,只是在较低煅烧温度、较短煅烧时间情况下核壳结构烧结陶粒的筒压强度均较低。②铁尾矿用量为70%,碱渣用量为6%,煅烧温度为1 140 ℃,煅烧时间为90 min情况下,核壳结构烧结陶粒的吸水率为1.25%、膨胀率为1.24%、堆积密度为870.3 kg/m3、筒压强度为10.67 MPa,符合国家标准中高强陶粒的要求(吸水率<10%、堆积密度等级<900 kg/m3、筒压强度等级>6.50 MPa)。③该陶粒碎磨产品(0.075~0 mm)氯离子渗出率为0.000 1%,远低于标准中I类砂≤0.01%的要求。④核壳结构烧结陶粒核芯配合料中的碱渣是促进蓝晶石形成的重要原料,蓝晶石是影响该陶粒强度的关键性矿物,升高煅烧温度和延长煅烧时间均能促进陶粒中含氯化合物的形成,防止掺加碱渣的陶粒中氯离子的渗出。  相似文献   

2.
以铁尾矿粉、粉煤灰作为原料,通过高温烧结过程制备出了铁尾矿陶粒.采用X-射线衍射(XRD)和扫描电子显微镜(SEM)分析了铁尾矿陶粒的晶相与微观结构,系统研究了铁尾矿含量、煅烧温度及保温时间对铁尾矿陶粒性能的影响,确定较优的铁尾矿含量、煅烧温度及保温时间.结果表明:随着铁尾矿含量、煅烧温度及保温时间的增加,铁尾矿陶粒的堆积密度、表观密度及筒压强度显著增强;较优的铁尾矿含量(质量分数)为70%,铁尾矿陶粒较优的煅烧工艺制度为1100℃、保温40 min.随着煅烧温度及保温时间增加到1100℃及40 min,铁尾矿陶粒主要由CaSiO3,Al2SiO5,MgSiO3,Ca2Fe2O5,Ca7Si2P2O16及CaAl2Si2O8晶相构成.煅烧温度低于900℃、保温时间为10 min时,陶粒由松散的微米级及亚微米级尺寸的颗粒及孔洞构成;随着煅烧温度、保温时间分别增加到1100℃、40 min,铁尾矿陶粒中存在尺寸为数百微米的致密无规则颗粒,从而使陶粒密度、筒压强度显著提高.  相似文献   

3.
我国铁尾矿堆存量高达十几亿吨,造成了土地资源占用和生态环境污染等问题,因此,对铁尾矿进行资源化利用有重要意义。以石人沟铁矿选矿厂铁尾矿为主料、唐山矿业公司煤矸石为辅料烧制陶粒,研究了焙烧温度、焙烧时间、铁尾矿用量对陶粒的堆积密度、表观密度、筒压强度、吸水率等物理力学性能的影响,并借助XRD、偏光显微镜等测试技术,对陶粒的物相组成和微观形貌进行分析。结果表明,在焙烧温度1100℃、焙烧时间20min、铁尾矿用量75%时,可以得到筒压强度8.78MPa、堆积密度0.87g/cm3、表观密度1.57g/cm3、吸水率7.93%的陶粒,满足国标GB/T17431.1—2010中900级轻集料陶粒的性能要求;焙烧过程中石英发生了明显的玻璃化现象,不同组分反应生成低共熔点液相,使得陶粒内部结构更为致密,进而提高了陶粒的强度、降低了陶粒的吸水率;焙烧时生成的液相对气体形成束缚,使得陶粒内部有气孔产生。研究结果为实现铁尾矿资源二次利用提供了参考。  相似文献   

4.
以铁尾矿为原料,粉煤灰为成分校正剂制备高强轻质陶粒。利用热分析仪(TG-DSC)和X射线衍射仪(XRD)分析了原料的热反应过程,确定陶粒烧制温度范围。设计正交试验研究了成分配比、烧制温度、高温区升温速率和保温时间对陶粒堆积密度、表观密度、吸水率和筒压强度的影响,优化陶粒制备工艺。结果显示,陶粒的原料配比对堆积密度和表观密度影响较大,而烧制温度对吸水率和筒压强度影响较大。料球中Al2O3含量为17%,以10℃/min的速度升温至1 000℃,再以25℃/min的速度升温至1 210℃,保温30 min,所制备陶粒堆积密度888.20 kg/m3,表观密度为1 907.14 kg/m3,筒压强度为8.34 MPa,1 h吸水率为5.04%,满足国标GB/T 17431.1—2010中规定的900级轻质高强陶粒性能要求,为高硅铁尾矿的综合利用提供了一条新途径。   相似文献   

5.
采用商洛铁尾矿制备堆积密度小于 300 kg/m3且抗压碎强度较高的超轻陶粒。研究原料配方、发泡剂含量、烧成温度及保温时间对铁尾矿基超轻陶粒性能的影响。结果表明,采用 80% 铁尾矿、10% 钾钠石粉和 10% 高岭土为原料,加入 0.6% 的 Si C 为发泡剂,经球磨、成型、烧成后可制备铁尾矿基超轻陶粒,堆积密度为 228 kg/m3,抗压碎强度为 1.07 MPa,筒压强度为 5.31 MPa,吸水率为 9.58%。采用该铁尾矿基超轻陶粒为轻骨料制备陶粒混凝土,抗折强度较聚苯颗粒混凝土提高 162%,抗压强度提高 400%。  相似文献   

6.
以铁尾矿为主要原料烧制轻质高强度陶瓷颗粒,研究铁尾矿含量、发泡剂添加量和烧成温度对陶粒性能的影响.结果表明,采用100%铁尾矿为原料,0.1%碳化硅(SiC)为发泡剂,在1150℃保温20 min,制得陶粒的堆积密度为0.99 t/m3,筒压强度为16.3 MPa,吸水率为4.25%.再以此陶粒作为骨料制备陶粒混凝土,...  相似文献   

7.
王荣林  王欢 《现代矿业》2020,36(3):108-112
姑山矿业公司为提高细粒尾矿的综合利用率,研究分析了细粒尾矿的性质,系统研究了尾矿含量、煅烧工艺制度对不同成分体系尾矿陶粒堆积密度、表观密度、空隙率、吸水率、筒压强度及软化系数的影响。研究得出了全尾矿陶粒、细粒尾矿+污泥陶粒、细粒尾矿+污泥+粉煤灰陶粒3种成分体系的尾矿陶粒较优的尾矿含量及煅烧工艺制度,且3种尾矿陶粒均可代替石头用作粗集料。  相似文献   

8.
为解决低硅铁尾矿大量堆存且利用难度大等问题,以杨家湾尾矿库低硅铁尾矿为主要原料,掺入了某铜尾矿和市售煤粉,通过烧结法制备轻质烧结陶粒,并考察了原料配比、水料比、尾矿粒度、烧结条件等因素对陶粒性能的影响。结果表明,质量配比为m(铁尾矿)∶m(铜尾矿)∶m(煤粉)=8∶1∶1(即铁尾矿掺量80%)、水料比1∶5、烧结温度1 120 ℃、烧结时间20 min的条件下制备出堆积密度为873.2 kg/m3、筒压强度5.13 MPa、1 h吸水率为7.65%的轻质陶粒,结合陶粒形貌、物相及热重分析,陶粒烧结过程中产生了起增强强度作用且呈致密网状结构的透辉石。该研究为低硅铁尾矿的资源化利用提供了新的利用途径。   相似文献   

9.
为资源化利用钢渣,以钢渣、粉煤灰和粘土为主要原料制备高强陶粒。试验研究表明,随钢渣的质量分数增加,钢渣高强陶粒的堆积密度增加、吸水率降低、筒压强度提高。当钢渣质量分数在10~20%时,可制得堆积密度800~1200 kg/m~3、筒压强度7~13 MPa的高强陶粒。SEM-EDS分析发现,陶粒内部气孔多、分布均匀、少连通,这种结构有利于堆积密度的降低。X射线衍射(XRD)分析表明,陶粒中主要晶体为透辉石(CaO·MgO·2SiO_2),石英(α-SiO_2)、钙铁辉石(CaO·FeO·2SiO_2)和钙长石(CaO·Al_2O_3·2SiO_2),这些晶体的存在有助于钢渣陶粒强度的提高。  相似文献   

10.
为拓展建筑石矿尾泥的资源化利用途径,开展了以新开元尾泥为主要原料、市政污泥及石灰石为添加剂制备高强陶粒的烧制试验,考察了原料组成及焙烧制度对陶粒堆积密度、吸水率、筒压强度等性质的影响。结果表明:在预热温度500℃、预热时间20 min、焙烧温度1 130℃、焙烧时间10 min时,以石矿尾泥80%、市政污泥10%及石灰石10%为原料,可以制得堆积密度760 kg/m3、吸水率2.6%、筒压强度10.3 MPa的高强陶粒;在高温焙烧阶段添加市政污泥,可以促进孔隙的形成,降低陶粒的密度,促使陶粒轻质化;石灰石的添加兼具造气和助熔的作用。  相似文献   

11.
为充分利用尾矿资源,以多元固废(钒钛铁尾矿、金尾矿、页岩和水库底泥)为原料制备高强烧结透水砖,采用XRF、XRD及SEM研究了原料的物化特性,通过钒钛铁尾矿烧结产品的指标分析了其烧结特性,讨论了钒钛铁尾矿级配及粘结剂配比对透水砖性能的影响,确定了适宜的透水砖制备工艺参数。结果表明:①钒钛铁尾矿主要化学组成为SiO2、CaO、MgO,有利于形成辉石体系,促进结构的致密性,应用于烧结材料较为理想。颗粒表面粗糙,用作透水砖骨料时能够形成骨架结构,并在颗粒间形成一定孔隙,有利于砖体的透水性。②钒钛铁尾矿在不同烧结温度下颜色变化较大,随着烧结温度的升高,颜色由黄色逐渐转变为褐色,线膨胀率持续降低,质量损失率逐渐升高,堆积密度不断增大。③试验确定钒钛铁尾矿的适宜级配为1.18~4.75 mm占20%、0.60~1.18 mm占50%、0.15~0.60 mm占30%,适宜掺量78%;粘结剂的适宜配比为w(金尾矿)∶w(页岩)∶w(水库底泥)=2∶1∶1。④以钒钛铁尾矿为骨料制备透水砖,适宜的成型压力为25 MPa、烧结温度为1 080 °C、保温时间为90 min,此时透水砖抗压强度达到64 MPa,透水系数为0.062 cm/s,保水性为0.62 g/cm2,满足《透水路面砖和透水路面板》(GB/T 25993—2010)和《透水砖》(JCT 945—2005)的要求。  相似文献   

12.
以黄金尾砂制备发泡陶瓷应用前景广阔,但存在烧结温度过高等问题,烧结助剂的添加可以有效降低发泡陶瓷的烧结温度。以氟硅酸钠和钠长石的混合物为烧结助剂,采用无压粉体烧结法制备黄金尾砂发泡陶瓷,研究了氟硅酸钠和钠长石添加比例对黄金尾砂发泡陶瓷微观形貌、抗压强度、体积密度及显气孔率的影响。结果表明:随着氟硅酸钠所占比例的增加,样品的抗压强度和体积密度均先上升后下降,显气孔率先减小后增大,孔径尺寸和分布的均匀性变好;当氟硅酸钠与钠长石添加比例为5∶3、烧结温度为1 050 ℃时,可以成功制备出体积密度455 kg/m3、抗压强度4.7 MPa、显气孔率21%、气孔分布均匀的黄金尾砂发泡陶瓷。适量添加钠长石可以增加气孔数量,添加过量则会因为高温下低黏度液体含量过高而导致孔结构坍塌;烧结助剂应该以氟硅酸钠为主,根据不同要求添加适量的钠长石以提高显气孔率。  相似文献   

13.
我国尾矿资源的综合利用一直是一个难题。以山西某碱铝硅质型铜尾矿为主要原料制备了高强陶粒轻集料。基于原料化学成分分析进行物料配比试验、粉磨试验、造粒试验及设计L16(45)烧成制度正交试验研究,结果表明,优选试验配方(质量配比)为:铜尾矿50%、长石25%、白云石10%、废弃土15%、黏结剂水玻璃的用量(原料质量比)为5%。确定最优烧成制度为:预热温度800℃、预热时间20 min、烧成温度1 170℃、烧成时间15 min。最终烧制出的尾矿陶粒轻集料堆积密度为874 kg/m3,筒压强度达到7.5 MPa,吸水率为2.1%,为铜尾矿的高附加值综合利用提供了一个新的解决方案。   相似文献   

14.
烧结制度对钒尾矿陶粒性能及结构的影响   总被引:1,自引:0,他引:1  
陈佳  陈铁军  张一敏 《金属矿山》2014,43(7):172-176
湖北某石煤提钒尾矿是一种优质陶粒原料,为了揭示烧结制度对陶粒性能及结构的影响,以不同烧结温度和烧结时间下陶粒的XRD图谱、SEM照片分析为手段,对颗粒强度和吸水率随预热及烧结的温度和时间变化的规律进行了分析。结果表明:①提高烧结温度、延长烧结时间,陶粒的颗粒强度先上升后下降、吸水率下降,这是由于适当提高烧结温度或延长烧结时间,均有利于生成新的长石,新生成的长石与石英等硅铝酸盐矿物形成低共熔物,填充在坯体颗粒间,使陶粒内部形成相对均匀的不连通气孔,因而提高陶粒的强度、降低陶粒的吸水率;过高的烧结温度或过长的烧结时间会使陶粒内部形成的多元低共熔物发生不均匀流动,导致气孔兼并、结构疏松,因而陶粒的强度下降。②在预热温度为400 ℃,预热时间为30 min,烧结温度为1 130 ℃,烧结时间为10 min情况下,所得陶粒吸水率、筒压强度、粒型系数、堆积密度及颗粒级配均达到GB/T 17431.1-1998要求。  相似文献   

15.
在综合分析BIF尾矿基本特性的基础上,以BIF尾矿为主要原料,选择不同的粘结剂制备轻质墙体材料。研究结果表明,最佳工艺参数为铁尾矿、无机粘结剂和碱液改性生物质粘结剂的质量比90∶5∶5、烧结温度1 200±10 ℃、烧结时间30min。在最佳条件下制备的产品,体积密度1.314 g/cm3、显气孔率30.98%、抗压强度达到MU7.5标准。  相似文献   

16.
大比例掺用铁尾矿制备轻质保温墙体材料   总被引:1,自引:0,他引:1  
以水泥为胶凝剂、黄石市灵乡铁矿尾矿为主要原料制备轻质保温墙体材料,研究了轻骨料膨胀珍珠岩、铁尾矿及其碱性激发剂掺量和水灰比对试件抗压强度、容重、导热系数的影响。结果表明:试验用碱性激发剂对铁尾矿的活性有显著的激发作用,从而可提高铁尾矿的掺用比例、减少水泥用量;当水泥、铁尾矿、激发剂、膨胀珍珠岩的质量比为1∶2.5∶0.25∶0.63,水灰比为0.8时,试件28 d的抗压强度>5 MPa、容重<900 kg/m3、导热系数<0.231 W/(m·k),满足轻质保温墙体材料的性能要求。  相似文献   

17.
为提高透水砖的力学性能与透水性能,同时为铁尾矿综合利用寻求一条有途径,以铁尾矿为主要原料,研发出一种新型玻璃透水砖。用铁尾矿熔制基础玻璃,参照基础玻璃DSC分析结果制定烧结温度,将基础玻璃按照粒度大小分成5组进行烧结得到玻璃透水砖试样。对试样的抗压强度、透水系数、保水性做测试分析。结果表明,当基础玻璃粒度为4~2.23 mm、烧结温度为760~810℃时,试样各项性能指标较为理想。此时试样的抗压强度为24 MPa,透水系数为1.06~0.98 cm/s,保水性为0.9~0.4 g/cm。玻璃透水砖可以同时具备较大的抗压强度和良好的透水性,有很好的推广应用前景。   相似文献   

18.
利用赤泥制备高强陶粒的试验研究   总被引:1,自引:0,他引:1  
利用拜耳法赤泥、页岩和粉煤灰等原料制备了高强陶粒。赤泥掺入量为50%时, 陶粒堆积密度840 kg/m3, 筒压强度达到7.5 MPa,强度标号45 MPa, 1 h吸水率7.6%, 表观密度1 000 kg/m3,孔隙率16.0%, 放射性能够满足作为轻集料的活度要求。利用XRD、SEM等分析手段, 对赤泥陶粒烧结机理进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号