首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Let (Y,X)={Y(t),X(t),-∞j) be a renewal point processes on (0,∞), with a finite mean rate, independent of (Y,X). We consider the estimation of regression function r(x0, x1,...,xm-1; τ1,...,τm) of ψ(Y(τm)) given (X(0)=x0, X(τ1)=x1,...,X(τm-1)=x-1 ) for arbitrary lags 0<τ1<...< τm on the basis of the discrete-time observations {Y(tj),X(tj),tj)j=1n . We estimate the regression function and all its partial derivatives up to a total order p⩾1 using high-order local polynomial fitting. We establish the weak consistency of such estimates along with rates of convergence. We also establish the joint asymptotic normality of the estimates for the regression function and all its partial derivatives up to a total order p⩾1 and provide explicit expressions for the bias and covariance matrix (of the asymptotically normal distribution)  相似文献   

3.
The paper deals with the statistical characterization of sample estimates of the fourth-order cumulants of a random process consisting of multiple complex sinusoids and additive colored Gaussian noise. In particular, it presents necessary and sufficient conditions for strong consistency of the sample cumulants of arbitrary orders, and derives expressions for the asymptotic covariance of the sample estimates of the fourth-order cumulants. It is shown that the fourth-order cumulant C4y1,...,τ4) can be written as a function of a single argument τ=τ34 12, which implies large flexibility in estimating the cumulant. It is recommended that the estimate be based upon lags such that τ1 is distant from τ2 and τ3 is distant from τ4, and/or as a linear combination of such terms. The asymptotic variance of a cumulant-based frequency estimator is shown to have the form c2·SNR-2+c3·SNR-3 +c4·SNR-4, where the coefficient c 2 may possibly vanish. The theory is illustrated via numerical examples. The results of this paper will be useful in analyzing the performance of various cumulant-based frequency estimation algorithms  相似文献   

4.
The minimum-redundancy prefix code problem is to determine, for a given list W=[ω1,..., ωn] of n positive symbol weights, a list L=[l1,...,ln] of n corresponding integer codeword lengths such that Σi=1 n 2-li⩽1 and Σi=1n ωili is minimized. Let us consider the case where W is already sorted. In this case, the output list L can be represented by a list M=[m1,..., mH], where ml, for l=1,...,H, denotes the multiplicity of the codeword length l in L and H is the length of the greatest codeword. Fortunately, H is proved to be O(min(log(1/p1),n)), where p1 is the smallest symbol probability, given by ω1i=1n ωi. We present the Fast LazyHuff (F-LazyHuff), the Economical LazyHuff (E-LazyHuff), and the Best LazyHuff (B-LazyHuff) algorithms. F-LazyHuff runs in O(n) time but requires O(min(H2, n)) additional space. On the other hand, E-LazyHuff runs in O(n+nlog(n/H)) time, requiring only O(H) additional space. Finally, B-LazyHuff asymptotically overcomes, the previous algorithms, requiring only O(n) time and O(H) additional space. Moreover, our three algorithms have the advantage of not writing over the input buffer during code calculation, a feature that is very useful in some applications  相似文献   

5.
The Gaussian arbitrarily varying channel with input constraint Γ and state constraint Λ admits input sequences x=(x1,---,Xn) of real numbers with Σxi2nΓ and state sequences s=(S1,---,sn ) of real numbers with Σsi2nΛ; the output sequence x+s+V, where V=(V1,---,Vn) is a sequence of independent and identically distributed Gaussian random variables with mean 0 and variance σ2. It is proved that the capacity of this arbitrarily varying channel for deterministic codes and the average probability of error criterion equals 1/2 log (1+Γ/(Λ+σ2)) if Λ<Γ and is 0 otherwise  相似文献   

6.
The spectroscopic properties of Ho3+ laser channels in KGd(WO4)2 crystals have been investigated using optical absorption, photoluminescence, and lifetime measurements. The radiative lifetimes of Ho3+ have been calculated through a Judd-Ofelt (JO) formalism using 300-K optical absorption results. The JO parameters obtained were Ω2=15.35×10-20 cm2, Ω 4=3.79×10-20 cm2, Ω6 =1.69×10-20 cm2. The 7-300-K lifetimes obtained in diluted (8·1018 cm-3) KGW:0.1% Ho samples are: τ(5F3)≈0.9 μs, τ( 5S2)=19-3.6 μs, and τ(5F5 )≈1.1 μs. For Ho concentrations below 1.5×1020 cm-3, multiphonon emission is the main source of non radiative losses, and the temperature independent multiphonon probability in KGW is found to follow the energy gap law τph -1(0)=βexp(-αΔE), where β=1.4×10-7 s-1, and α=1.4×103 cm. Above this holmium concentration, energy transfer between Ho impurities also contributes to the losses. The spectral distributions of the Ho3+ emission cross section σEM for several laser channels are calculated in σ- and π-polarized configurations. The peak a σEM values achieved for transitions to the 5I8 level are ≈2×10-20 cm2 in the σ-polarized configuration, and three main lasing peaks at 2.02, 2.05, and 2.07 μm are envisaged inside the 5I75I8 channel  相似文献   

7.
A group code C over a group G is a set of sequences of group elements that itself forms a group under a component-wise group operation. A group code has a well-defined state space Σk at each time k. Each code sequence passes through a well-defined state sequence. The set of all state sequences is also a group code, the state code of C. The state code defines an essentially unique minimal realization of C. The trellis diagram of C is defined by the state code of C and by labels associated with each state transition. The set of all label sequences forms a group code, the label code of C, which is isomorphic to the state code of C. If C is complete and strongly controllable, then a minimal encoder in controller canonical (feedbackfree) form may be constructed from certain sets of shortest possible code sequences, called granules. The size of the state space Σk is equal to the size of the state space of this canonical encoder, which is given by a decomposition of the input groups of C at each time k. If C is time-invariant and ν-controllable, then |Σk|=Π1⩽j⩽v|Fj/F j-1|j, where F0 ⊆···⊆ Fν is a normal series, the input chain of C. A group code C has a well-defined trellis section corresponding to any finite interval, regardless of whether it is complete. For a linear time-invariant convolutional code over a field G, these results reduce to known results; however, they depend only on elementary group properties, not on the multiplicative structure of G. Moreover, time-invariance is not required. These results hold for arbitrary groups, and apply to block codes, lattices, time-varying convolutional codes, trellis codes, geometrically uniform codes and discrete-time linear systems  相似文献   

8.
We consider the problem of one-dimensional parameter transmission over a Poisson channel when the input signal (intensity) obeys a peak energy constraint. We show that it is possible to choose input signals and an estimator in such a way that the mean-square error of parameter transmission will decrease exponentially with transmission time T→∞ and we find the best possible exponent. For more general loss functions of the type |x|α we find the best possible exponent if α⩾α0=(1+√5)/2≈1.618. If 0<α<α0 then some lower and upper bounds for the best possible exponent are established  相似文献   

9.
A measurement procedure has been developed and tested to determine horizontal and vertical polarization radiative transfer properties, i,e., single scattering albedo (ω) and optical depth (τ), of vegetation under field conditions. The procedure was applied to a wheat crop for a series of biomass densities. The measurements were done using two different radiometers (1.4 and 5 GHz) and for different view angles. The measurements and calculations indicated that the ratios of horizontal and vertical polarization radiative transfer properties (α=Γhν, α'=τhν and β=ωh/ων) are slightly dependent on view angle. However, no significant dependence on biomass density could be discerned  相似文献   

10.
A function h(w) is said to be useful for the coding theorem if the coding theorem remains to be true when the lengths |w| of codewords w in it are replaced with h(w). For a codeword w=a0a1...am-1 of length m and an infinite sequence Q=(q0, q1, q2, ...) of real numbers such that 0n⩽½, let |w|Q denote the value Σn=0m-1 (if an =0 then -log2qn, else -log2(1-q n)), that is, -log2, (the probability that flippings of coins generate x) assuming that the (i+1)th coin generates a tail (or 0) with probability qi. It is known that if 0n→∞ qn then |w|Q is useful for the coding theorem and if limn→∞ q n/(1/(2n))=0 then |w|Q is not useful. We introduce several variations of the coding theorem and show sufficient conditions for h(w) not to be useful for these variations. The usefulness is also defined for the expressions that define the Kolmogorov complexity and the universal distribution. We consider the relation among the usefulness for the coding theorem, that for the Kolmogorov complexity, and that for the universal distribution  相似文献   

11.
If pi(i=1,···, N) is the probability of the ith letter of a memoryless source, the length li of the corresponding binary Huffman codeword can be very different from the value -log pi. For a typical letter, however, li≈-logpi. More precisely, Pm -=Σ/sub j∈{i|l<-logpj-m}/pj<2-m and Pm +=Σ/sub j∈{i|li>-logpi+m/}pj<2-c(m-2)+2, where c≈2.27  相似文献   

12.
The reduction of the current amplification factor of a wide-base transistor, with growing doping concentration in the base region, is investigated. A method for the determination of the minority-carrier lifetime τn in the base region and the emitter Gummel number Ge is developed. The method is based on transistor structures differing only in the base width. It was found that the lifetime τn decreases according to the power law τn~N-0.45A. This result is analyzed for different recombination processes. Good agreement is obtained if shallow impurities acting as recombination centers are assumed. The injection-limited current gain βγ decreases significantly with an increase in the total number of the doping concentration of the base, reaches a broad maximum, and then falls slowly. The maximum value of Ge is found to be 1.1×1014 cm-4-s in good agreement with theoretical results. Finally, the contribution of the injection efficiency γ and the transport factor αT to the current gain α are determined. It is found that α is limited mainly by the injection efficiency γ  相似文献   

13.
The single-layer reduction (SLR) model computes the normalized phase constant (β/β0), dielectric loss (αd), and conductor loss (αc) for the Schottky contact slow-wave microstrip (SCSM) line with accuracy about 2.0% for β/β0, and within 0.01 dB/mm for the total loss (αtdc) as compared against the experimental results. The SLR model has been further used to analyze the normal and abnormal characteristics of a proposed Schottky contact suspended slow-wave microstrip (SCSSM) line with 22% increase in β/β0 over the normal SCSM line. The SCSSM line could be useful in the lower range of RF for the development of compact components  相似文献   

14.
The linear superposition approach to the modeling of small-signal parameters in the presence of substantial base recombination, which involves a virtual transistor without base recombination, is identified to cause incorrect emitter current modeling. All of the terminal current changes can be correctly modeled by using the measured forced-VBE Early voltage in a new equivalent circuit, which properly accounts for NBR and Early effect in a physically consistent manner. As a result, practical situations of small collector-base resistance (τ μ) can be properly handled, τμ is related to the ac current-drive and ac voltage-drive Early voltages, which facilitates parameter extraction and circuit modeling. Measurements on state-of-the-art UHV/CVD SiGe HBT's show that the conventional assumption that τμ is far larger than the forced-VBE output resistance τ0 does not apply to devices with significant NBR. In practice, τμ can be comparable to (and smaller than) τ0 depending on the device processing, profiles and operating temperature. Temperature dependent data are presented, and circuit implications are discussed based on the new equivalent circuit  相似文献   

15.
An estimator Eˆ(dn,n) of the conditional expectation E[Xn+1|Xn,...,X(n-dn+1)] in a centered, stationary, and ergodic Gaussian process {Xi}i with absolutely summable Wold coefficients is constructed on the basis of having observed X1,...,Xn . For a suitable choice of the length dn→∞ (n→∞) of the past covered by the conditional expectation, it is established that |Eˆ(dn,n)-E[Xn+1|Xn ,...,X(n-dn+1)]|→0 with probability 1. In addition, sufficient conditions for |E[Xn+1|Xn,X n-1,...]-E[Xn+1|Xn,...,X(n-dn +1)]| →0 to hold with probability 1 are given, that is, conditions under which Eˆ(dn,n) can be used as a strongly consistent forecaster for |E[Xn+1|Xn,X n-1,...]  相似文献   

16.
Three constructions for n-dimensional regular simplex codes αi, 0⩽i⩽n, are proposed, two of which have the property that αi for 1⩽i⩽n is a cyclic shift of α1. The first method is shown to work for all the positive integers n=1,2,... using only three real values. It turns out that these values are rational whenever n+1 is a square of some integer. Whenever a (v,k,λ) cyclic (or Abelian) difference set exists, this method is generalized so that a similar method is shown to work with ν=n (the number of dimensions)  相似文献   

17.
Luke  H.D. 《Electronics letters》1998,34(19):1823-1824
Arrays with good correlation properties are required for code-departure imaging, as well as for other applications of two-dimensional signal processing. Since binary arrays with perfect periodic autocorrelation are rather sparse. `pseudoperiodic' binary arrays are discussed. The transmitted binary array is correlated in the receiver with the same array which is surrounded periodically by similar ternary arrays. A construction method is presented that permits the construction of such `pseudoperiodic' binary arrays with perfect correlation properties for all sizes p1a1×p 2a2 (p1, p2 odd prime, a1, a2=1, 2, 3...)  相似文献   

18.
For a rational α∈(0,1), let 𝒜n×m,α be the set of binary n×m arrays in which each row has Hamming weight αm and each column has Hamming weight αn, where αm and αn are integers. (The special case of two-dimensional balanced arrays corresponds to α=1/2 and even values for n and m.) The redundancy of 𝒜n×m,α is defined by ρn×m,α=nmH(α)-log2|𝒜 n×m,α| where H(x)=-xlog2x-(1-x)log2(1-x). Bounds on ρn×m,α are obtained in terms of the redundancies of the sets 𝒜ℒ,α of all binary ℒ-vectors with Hamming weight αℒ, ℒ∈{n,m}. Specifically, it is shown that ρn×m,α⩽nρm,α+mρ n,α where ρℒ,α=ℒH(α)-log2|𝒜 ℒ,α| and that this bound is tight up to an additive term O(n+log m). A polynomial-time coding algorithm is presented that maps unconstrained input sequences into 𝒜n×m,α at a rate H(α)-(ρm,α/m)  相似文献   

19.
Informally, an error-correcting code has "nice" list-decodability properties if every Hamming ball of "large" radius has a "small" number of codewords in it. We report linear codes with nontrivial list-decodability: i.e., codes of large rate that are nicely list-decodable, and codes of large distance that are not nicely list-decodable. Specifically, on the positive side, we show that there exist codes of rate R and block length n that have at most c codewords in every Hamming ball of radius H-1(1-R-1/c)·n. This answers the main open question from the work of Elias (1957). This result also has consequences for the construction of concatenated codes of good rate that are list decodable from a large fraction of errors, improving previous results of Guruswami and Sudan (see IEEE Trans. Inform. Theory, vol.45, p.1757-67, Sept. 1999, and Proc. 32nd ACM Symp. Theory of Computing (STOC), Portland, OR, p. 181-190, May 2000) in this vein. Specifically, for every ε > 0, we present a polynomial time constructible asymptotically good family of binary codes of rate Ω(ε4) that can be list-decoded in polynomial time from up to a fraction (1/2-ε) of errors, using lists of size O(ε-2). On the negative side, we show that for every δ and c, there exists τ < δ, c1 > 0, and an infinite family of linear codes {Ci}i such that if ni denotes the block length of Ci, then C i has minimum distance at least δ · ni and contains more than c1 · nic codewords in some Hamming ball of radius τ · ni. While this result is still far from known bounds on the list-decodability of linear codes, it is the first to bound the "radius for list-decodability by a polynomial-sized list" away from the minimum distance of the code  相似文献   

20.
A model for the multipath delay profile of fixed wireless channels   总被引:4,自引:0,他引:4  
This paper deals with the measurement and modeling of multipath delay on fixed wireless paths at 1.9 GHz in suburban environments. The primary focus is on the delay profile, which is the normalized plot of received power versus delay in response to an RT “impulse.” We describe measurement campaigns in the western suburbs of Chicago, IL, and in suburban north-central New Jersey. Our analysis of the data suggests to us that, for directive terminal antennas, the delay profile can be modeled as having a “spike-plus-exponential” shape, i.e., a strong return (“spike”) at the lowest delay, plus a set of returns whose mean powers decay exponentially with delay. This delay profile can be characterized by just two parameters (both variable over the terrain), namely, the ratio (K0) of the average powers in the “spike” and “exponential” components and the decay time constant (τ0) of the “exponential” component. No such simple structure appears to apply for delay profiles using omnidirectional antennas. For a directive antenna with a 32° beamwidth, we find that: (1) the statistical correlation between the profile parameters K0 and τ0 is negligible; (2) these parameters are relatively insensitive to antenna height and path length; and (3) over each measured region (Illinois and New Jersey), K0 and τ0 have median values close to 8 dB and just below 0.2 μs, respectively. Moreover, we have found simple probability distributions that accurately portray the variability of K0 and τ0 over the terrain  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号