首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurons and glia are generated throughout adulthood from proliferating cells in two regions of the rat brain, the subventricular zone (SVZ) and the hippocampus. This study shows that exogenous basic fibroblast growth factor (FGF-2) and epidermal growth factor (EGF) have differential and site-specific effects on progenitor cells in vivo. Both growth factors expanded the SVZ progenitor population after 2 weeks of intracerebroventricular administration, but only FGF-2 induced an increase in the number of newborn cells, most prominently neurons, in the olfactory bulb, the normal destination for neuronal progenitors migrating from the SVZ. EGF, on the other hand, reduced the total number of newborn neurons reaching the olfactory bulb and substantially enhanced the generation of astrocytes in the olfactory bulb. Moreover, EGF increased the number of newborn cells in the striatum either by migration of SVZ cells or by stimulation of local progenitor cells. No evidence of neuronal differentiation of newborn striatal cells was found by three-dimensional confocal analysis, although many of these newborn cells were associated closely with striatal neurons. The proliferation of hippocampal progenitors was not affected by either growth factor. However, EGF increased the number of newborn glia and reduced the number of newborn neurons, similar to the effects seen in the olfactory bulb. These findings may be useful for elucidating the in vivo role of growth factors in neurogenesis in the adult CNS and may aid development of neuronal replacement strategies after brain damage.  相似文献   

2.
An in vitro slice culture was established for investigating olfactory neural development. The olfactory epithelium was dissected from embryonic day 13 rats; 400 microns slices were cultured for 5 days in serum-free medium on Millicell-CM membranes coated with different substrates. The slices were grown in the absence of their appropriate target, the olfactory bulb, or CNS derived glia. The cultures mimic many features of in vivo development. Cells in the olfactory epithelium slices differentiate into neurons that express olfactory marker protein (OMP). OMP-positive cells have the characteristic morphology of olfactory receptor neurons: a short dendrite and a single thin axon. The slices support robust axon outgrowth. In single-label experiments, many axons expressed neural specific tubulin, growth-associated protein 43 and OMP. Axons appeared to grow equally well on membranes coated with type I rat tail collagen, laminin or fibronectin. The cultures exhibit organotypic polarity with an apical side rich in olfactory neurons and a basal side supporting axon outgrowth. Numerous cells migrate out of the slices, of which a small minority was identified as neurons based on the expression of neural specific tubulin and HuD, a nuclear antigen, expressed exclusively in differentiated neurons. Most of the migrating cells, however, were positive for glial fibrillary acidic protein and S-100, indicating that they are differentiated glia. A subpopulation of these glial cells also expressed low-affinity nerve growth factor receptors, indicating that they are olfactory Schwann cells. Both migrating neurons and glia were frequently associated with axons growing out of the slice. In some cases, axons extended in advance of migrating cells. This suggests that olfactory receptor neurons in organotypic cultures require neither a pre-established glial/neuronal cellular terrain nor any target tissue for successful axon outgrowth. Organotypic olfactory epithelial slice cultures may be useful for investigating cellular and molecular mechanisms that regulate early olfactory development and function.  相似文献   

3.
B-50/GAP-43, a neural growth-associated phosphoprotein, is thought to play a role in neuronal plasticity and nerve fiber formation since it is expressed at high levels in developing and regenerating neurons and in growth cones. Using a construct containing the coding sequence of B-50/GAP-43 under the control of regulatory elements of the olfactory marker protein (OMP) gene, transgenic mice were generated to study the effect of directed expression of B-50/GAP-43 in a class of neurons that does not normally express B-50/GAP-43, namely, mature OMP-positive olfactory neurons. Olfactory neurons have a limited lifespan and are replaced throughout adulthood by new neurons that migrate into the upper compartment of the epithelium following their formation from stem cells in the basal portion of this neuroepithelium. Thus, the primary olfactory pathway is exquisitely suited to examine a role of B-50/GAP-43 in neuronal migration, lifespan, and nerve fiber growth. We find that B-50/GAP-43 expression in adult olfactory neurons results in numerous primary olfactory axons with enlarged endings preferentially located at the rim of individual glomeruli. Furthermore, ectopic olfactory nerve fibers in between the juxtaglomerular neurons or in close approximation to blood vessels were frequently observed. This suggests that expression of B-50/GAP-43 in mature olfactory neurons alters their response to signals in the bulb. Other parameters examined, that is, migration and lifespan of olfactory neurons are normal in B-50/GAP-43 transgenic mice. These observations provide direct in vivo evidence for a role of B-50/GAP-43 in nerve fiber formation and in the determination of the morphology of axons.  相似文献   

4.
5.
The mRNA expression of presenilin-1 (PS1) and beta-amyloid precursor protein (betaAPP) was investigated in the embryonic day 20 rat olfactory bulb, nasal cavity, and inner ear using in situ hybridization histochemistry. In the olfactory bulb, PS1 mRNA was strongly expressed in both olfactory bulb neuroepithelium and the differentiating olfactory bulb. In contrast, betaAPP mRNA was preferentially expressed in differentiating fields. In the nasal cavity, PS1 mRNA was strongly expressed throughout the olfactory epithelium, while betaAPP mRNA expression was concentrated in the middle part of the epithelium. In the membrane labyrinth of the inner ear, although PS1 mRNA was evenly distributed in both sensory epithelium and supporting cells, betaAPP mRNA was exclusively expressed in the sensory epithelium. These data suggest that PS1 is expressed earlier than betaAPP, and that PS1 and betaAPP co-operatively play pivotal roles in the development of the olfactory and vestibulocochlear systems.  相似文献   

6.
Two glial cell types surround olfactory axons and glomeruli in the olfactory bulb (OB) and may influence synapse development and regeneration. OB astrocytes resemble type-1 astrocytes, and OB ensheathing cells resemble non-myelinating Schwann cells. We have produced clonal OB astrocyte and ensheathing cell lines from rat neonatal and adult OB cultures by SV40 large T antigen transduction. These cell lines have been characterized by morphology, growth characteristics, immunophenotype, and ability to promote neurite outgrowth in vitro. Neonatal and adult ensheathing cell lines were found to support higher neurite outgrowth than OB astrocyte lines. Neonatal OB astrocyte lines were of two types, high and low outgrowth support. The low support astrocyte lines express J1 and a chondroitin sulfate-containing proteoglycan as do astrocytes encircling the neonatal glomeruli in vivo. The adult OB astrocyte cell lines supported lower levels of outgrowth than adult ensheathing cell lines. These results are consistent with a positive role for ensheathing cells in OB synapse regeneration, in vivo. Further, based on our results, we hypothesize that ensheathing cells and high-outgrowth astrocytes facilitate axon growth in vivo, while low outgrowth astrocytes inhibit axon growth and may facilitate glomerulus formation.  相似文献   

7.
Neuronal precursor cells persist in the adult vertebrate forebrain, residing primarily in the ventricular/subventricular zone (SZ). In vivo, SZ precursors yield progeny which may die or give rise to glia. Yet they may also generate neurons, which are recruited to restricted regions such as the avian telencephalon and mammalian olfactory bulb. The survival of neurons arising from adult progenitors is dictated by both the availability of a permissive pathway for migration and the environment into which migration occurs. In the songbird higher vocal center (HVC), both humoral and contact-mediated signals modulate the migration and survival of new neurons, through an orchestrated set of hormonally regulated paracrine interactions. New neurons of the songbird brain depart the SZ to enter the brain parenchyma by migrating upon radial guide fibers, which emanate from cell bodies in the ventricular epithelium. The radial guide cells coderive with new neurons from a common progenitor, which is widespread throughout the songbird SZ. Neural precursors are also widely distributed in the adult mammalian SZ, although it is unclear whether avian and mammalian progenitor cells are homologous: Whereas neuronal recruitment persists throughout much of the songbird forebrain, in mammals it is limited to the olfactory bulb. In humans, the adult SZ appears to largely cease neurogenesis in vivo, although it, too, can produce neurons in vitro. In both rats and humans, the differentiation and survival of neurons arising from the postnatal SZ may be regulated by access to postmitotic trophic factors. Indeed, serial application of fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF) has allowed the generation and maintenance of neurons from the adult human SZ. This suggests the feasibility of inducing neurogenesis in the human brain, both in situ and through implanted progenitors. In this regard, using cell-specific neural promoters coupled to fluorescent reporters, defined progenitor phenotypes may now be isolated by fluorescence-activated cell sorting. Together, these findings give hope that structural brain repair through induced neurogenesis and neurogenic implants will soon be a clinical reality.  相似文献   

8.
We have previously demonstrated that the most rostral part of the subventricular zone (SVZ) is a source of neuronal progenitor cells whose progeny are destined to become interneurons of the olfactory bulb. To determine whether the number of newly generated neurons in the adult olfactory bulb could be increased by the administration of an exogenous factor, brain-derived neurotrophic factor (BDNF) was infused for 12 days into the right lateral ventricle of adult rat brains. The production of new cells was monitored by either the intraventricular infusion or intraperitoneal injection of the cell proliferation marker BrdU. In both experimental paradigms we observed significantly more BrdU-labeled cells in the olfactory bulbs on the BDNF-infused side than in the olfactory bulb of PBS-infused animals. Analysis of the BDNF-infused brains of animals injected intraperitoneally with BrdU demonstrated a 100% increase in the number of BrdU-labeled cells in the bulb, the preponderance ( approximately 90%) of which were double-labeled with a neuron-specific antibody. These results demonstrate that the generation and/or survival of new neurons in the adult brain can be increased substantially by an exogenous factor. Furthermore, the SVZ, and in particular the rostral part, may constitute a reserve pool of progenitor cells available for neuronal replacement in the diseased or damaged brain.  相似文献   

9.
10.
As retinal histogenesis proceeds there is a pronounced increase in the expression of fibroblast growth factor (FGF), reaching its maximum in the mature retina and largely in terminal differentiated retinal neurons. Recent in vivo evidence suggests that exogenous FGF functions as a differentiation and survival factor for a wide variety of cell types including CNS neurons and that endogenous FGF may perform similar functions. We have examined the consequences of selectively and independently inhibiting FGF1 or FGF2 expression using antisense oligonucleotides in embryonic chick retinal cells, differentiating in vitro. Whether FGF1 or FGF2 expression was inhibited the results were the same: a marked reduction in neuronal photoreceptor cells differentiation, an increase in programmed cell death, but no effects on cell proliferation. Even although these two related factors promote the same final effect on retinal cells, namely, neuronal differentiation and survival, their normal combined activities or levels appear to be important in achieving this effect. Stimulation with either exogenous FGF1 or FGF2 served to increase endogenous levels of both FGF1 and FGF2 and reversed the effects of antisense blockade of either FGF1 or FGF2. Our data suggest that although other sources of FGF exist within the eye, the function of endogenous FGF in differentiating retinal neurons may be to stimulate their differentiation and promote their survival.  相似文献   

11.
12.
BACKGROUND: Growth cone-associated protein (GAP43) is found in growing axons and we hypothesized that systemic treatment with antineoplastic agents should disrupt regeneration of olfactory receptor cells. Disruption of regeneration should be evidenced by decreased presence of growing axons in the olfactory bulb. OBJECTIVE: To evaluate GAP43 in human olfactory bulb in normal controls and in individuals receiving treatment for neoplasms. DESIGN: Immunocytochemical studies were performed on autopsied human olfactory bulbs to identify both GAP43 and olfactory marker protein immunoreactivity. The former recognizes growing axons and the latter is a definitive marker of adult olfactory nerve. SUBJECTS: Twenty-seven subjects were evaluated. Seven had received either antineoplastic agents and/or x-irradiation of the whole head. Four subjects were young, untreated controls, 10 were age matched to the treated group, and 2 had neoplasms but did not receive antineoplastic agents or irradiation of the head. In addition, 3 subjects with end-stage renal disease were immunostained. RESULTS: Subjects treated with antineoplastic agents or x-irradiation of the whole head displayed no statistically significant loss of olfactory bulb glomeruli, but GAP43 immunoreactivity was markedly reduced in all but 1 subject (P<.32). The subjects with end-stage kidney disease showed frank loss of both GAP43 immunoreactivity and olfactory glomeruli. CONCLUSIONS: Treatment with antineoplastic agents apparently does not damage olfactory epithelium directly but inhibits growth of new axons into the olfactory bulb. This observation suggests that the quality of olfactory experience may change during the course of treatment with antineoplastic agents because the olfactory nerve is not replaced.  相似文献   

13.
Olfactory receptor neurons undergo a continuous turnover in adult mammals. It is largely unknown how their axons invade the olfactory bulb and induce synaptic re-organization in glomeruli. Here, the cytochemical localization of lysosomal acid phosphatase has been studied in olfactory bulbs of adult rats and mice. The enzyme has been identified by specific substrate, inhibitors and absence in lysosomal acid phosphatase-knockout mice. Lysosomal acid phosphatase is located in primary and secondary lysosomes, which are unevenly distributed in the olfactory nerve layer and among olfactory glomeruli. In consecutive sections of glomeruli, the intensity of lysosomal acid phosphatase immunoreactivity co-varied with that of growth-associated phosphoprotein. Electron microscopically, differential lysosomal acid phosphatase staining in glomeruli corresponded to different proportions of labelled and unlabelled axons. Quantification revealed that lysosomal acid phosphatase labelling was strongest in non-synaptic profiles of terminal axons, while it was weak in or even missing from most synaptic profiles. Hence, growing olfactory axons apparently carry more lysosomal acid phosphatase than those which have established synaptic contacts. Following olfactory deafferentation both lysosomal acid phosphatase activity and growth-associated phosphoprotein-43 are lost from glomeruli, suggesting that both proteins are expressed in olfactory sensory axons during growth, while lysosomal acid phosphatase is apparently not a marker of anterograde terminal degeneration.  相似文献   

14.
Accumulating evidence indicates that various neurotrophic factors (NTFs) exist and function in the brain. In the mature mammalian brain, NTF expression is exclusively restricted to neurons. However, astrocytes activated by various cytokines, including fibroblast growth factor and interleukin-1 beta, produce a significant amount of nerve growth factor (NGF) in vitro. Furthermore, non-NGF type NTF expression in astrocytes is also activated by the cytokines. The cytokines also enhance both release of ciliary neurotrophic factor from and expression of high-molecular weight basic fibroblast growth factor (FGF) in astrocytes. In the early phase following brain injury, cytokine-activated astrocytes rescue the damaged neurons via NTFs and other biologically active molecules.  相似文献   

15.
A new member of the fibroblast growth factor (FGF) family, FGF-13, has been molecularly cloned as a result of high throughput sequencing of a human ovarian cancer cell library. The open reading frame of the novel human gene (1419 bp) encodes for a protein of 216 a.a. with a molecular weight of 22 kDa. The FGF-13 sequence contains an amino-terminal hydrophobic region of 23 a.a. characteristic of a signal secretion sequence. FGF-13 is most homologous, 70% similarity at the amino acid level, to FGF-8. Northern hybridization analysis demonstrated prominent expression of FGF-13 in human foetal and adult brain, particularly in the cerebellum and cortex. In proliferation studies with BaF3 cells, FGF-13 preferentially activates cell clones expressing either FGF receptor variant, 3-IIIc or 4. The signal transduction pathways of FGF-13 and FGF-2 were compared in rat hippocampal astrocytes. The two FGFs induce an equivalent level of tyrosine phosphorylation of mitogen-activated protein kinase (MAPK) and c-raf activation. However, FGF-13 is more effective than FGF-2 in inducing the phosphorylation of phospholipase C-gamma (PLC-gamma). Treatment of neuronal cultures from rat embryonic cortex with FGF-13 increases the number of glutamic acid decarboxylase immunopositive neurons, the level of high-affinity gamma-aminobutyric acid (GABA) uptake, and choline acetyltransferase enzyme activity. The GABAergic neuronal response to FGF-13 treatment is rapid with a significant increase occurring within 72 h. We have identified a novel member of the FGF family that is expressed in the central nervous system (CNS) and increases the number as well as the level of phenotypic differentiation of cortical neurons in vitro.  相似文献   

16.
OBJECTIVE: To improve the success of culturing olfactory neurons from human nasal mucosa by investigating the intranasal distribution of the olfactory epithelium and devising new techniques for growing human olfactory epithelium in vitro. DESIGN: Ninety-seven biopsy specimens were obtained from 33 individuals, aged 21 to 74 years, collected from 6 regions of the nasal cavity. Each biopsy specimen was bisected, and 1 piece was processed for immunohistochemistry or electron microscopy while the other piece was dissected further for explant culture. Four culture techniques were performed, including whole explants and explanted biopsy slices. Five days after plating, neuronal differentiation was induced by means of a medium that contained basic fibroblast growth factor. After another 5 days, cultures were processed for immunocytochemical analysis. RESULTS: The probability of finding olfactory epithelium in a biopsy specimen ranged from 30% to 76%, depending on its location. The dorsoposterior regions of the nasal septum and the superior turbinate provided the highest probability, but, surprisingly, olfactory epithelium was also found anteriorly and ventrally on both septum and turbinates. A new method of culturing the olfactory epithelium was devised. This slice culture technique improved the success rate for generating olfactory neurons from 10% to 90%. CONCLUSIONS: This study explains and overcomes most of the variability in the success in observing neurogenesis in cultures of adult human olfactory epithelium. The techniques presented here make the human olfactory epithelium a useful model for clinical research into certain olfactory dysfunctions and a model for the causes of neurodevelopmental and neurodegenerative diseases.  相似文献   

17.
Throughout life, olfactory sensory neurons are renewed from a population of dividing stem cells. Little is known about the molecular mechanisms that regulate the activation, self-renewal and differentiation of olfactory neuronal precursors; however, evidence indicates that soluble mediators may play a central role in olfactory neurogenesis. To identify molecules that regulate olfactory self-renewal and differentiation, we have recently established, cloned and propagated in vitro primary long-term cell cultures from the human fetal olfactory neuroepithelium. Here we show that primary human olfactory neuroblasts synthesize and release biologically active basic fibroblast growth factor which, in turn, supports neuroblast growth by autocrine/paracrine mechanisms. The growth-promoting activity of basic fibroblast growth factor is dose dependent and is accompanied by morphological changes of the cells and by an increase in the expression of neuronal-related genes. These observations indicate that endogenous basic fibroblast growth factor participates in controlling olfactory self-renewal and suggest that this cytokine represents a key regulatory element of olfactory neurogenesis.  相似文献   

18.
Hair cells, the sensory receptors of the mammalian inner ear, have long been thought to be produced only during embryogenesis, and postnatal hair cell loss is considered to be irreversible and is associated with permanent hearing and balance deficits. Little is known about the factors that regulate hair cell genesis and differentiation. The mitogenic effects of insulin and transforming growth factor alpha (TGFalpha) were assayed in vivo in normal and drug-damaged rat inner ear. Tritiated thymidine and autoradiographic techniques were used to identify cells synthesizing DNA. Simultaneous infusion of TGFalpha and insulin directly into the inner ear of adult rats stimulated DNA synthesis in the vestibular sensory receptor epithelium. New supporting cells and putative new hair cells were produced. Infusion of insulin alone or TGFalpha alone failed to stimulate significant DNA synthesis. These results suggest that exogenous growth factors may have utility for therapeutic treatment of hearing and balance disorders in vivo.  相似文献   

19.
The proliferation, migration, survival, and differentiation of oligodendrocyte progenitor cells, precursors to myelin-forming oligodendrocytes in the CNS, are controlled by a number of polypeptide growth factors in vitro. The requirement and roles for individual factors in vivo, however, are primarily unknown. We have used a cell transplantation approach to examine the role of fibroblast growth factor (FGF) in oligodendrocyte development in vivo. A dominant-negative version of the FGF receptor-1 transgene was introduced into oligodendrocyte progenitors in vitro, generating cells that were nonresponsive to FGF but responsive to other mitogens. When transplanted into the brains of neonatal rats, mutant cells were unable to migrate and remained within the ventricles. These results suggest a role for FGF signaling in establishing a motile phenotype for oligodendrocyte progenitor cell migration in vivo and illustrate the utility of a somatic cell mutagenesis approach for the study of gene function during CNS development in vivo.  相似文献   

20.
Stimulation of the epidermal growth factor receptor (EGF-R) produces numerous effects on central nervous system (CNS) cells in vitro including neuronal survival and differentiation, astrocyte proliferation and the proliferation of multipotent progenitors. However, the in vivo role of EGF-R is less well understood. In the present study, we demonstrate that EGF-R null mice generated on a 129Sv/J Swiss Black background undergo focal but massive degeneration the olfactory bulb, piriform cortex, neocortex, and thalamus between postnatal days 5 and 8 which is due, at least in part, to apoptosis. Some of the neuronal populations that degenerate do not normally express EGF-R, indicating an indirect mechanism of neuronal death. There were also delays in GFAP expression within the glia limitans and within structures outside the germinal zones in early postnatal ages. At or just prior to the onset of the degeneration, however, there was an increase in GFAP expression in these areas. The brains of EGF-R (-/-) animals were smaller but cytoarchitecturally normal at birth and neuronal populations appeared to be intact, including striatal GABAergic and midbrain dopaminergic neurons which have previously been shown to express EGF-R. Multipotent progenitors and astrocytes derived from EGF-R (-/-) mice were capable of proliferating in response to FGF-2. These data demonstrate that EGF-R expression is critical for the maintenance of large portions of the postnatal mouse forebrain as well as the normal development of astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号