首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lead-free ceramics (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT) + x mol% K4CuNb8O23 (KCN) + y mol% MnO2 have been prepared using the conventional solid-state reaction technique. Crystalline structures and Microstructures were analyzed by X-ray diffraction and scanning electron microscope (SEM) at room temperature. The low dielectric loss tanδ and relatively high piezoelectric properties were obtained when KCN and MnO2 were added into KNNT ceramics. The ceramics with x = 1.0, y = 0.50 exhibited excellent piezoelectric properties: high mechanical quality factor Qm = 1563, piezoelectric coefficient d33 = 96pC/N, electromechanical coupling coefficient kp = 42.2%, kt = 44.5%, k33 = 58.4%, relative dielectric constant ε′ = 308, tanδ = 0.4%. This material is a promising candidate for the lead-free piezoelectric transformer applications.  相似文献   

2.
Lead-free piezoelectric ceramics (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 have been synthesized by traditional ceramics process without cold-isostatic pressing. The effect of the content of LiNbO3 and the sintering temperature on the phase structure, the microstructure and piezoelectric properties of (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 ceramics were investigated. The result shows that the phase structure transforms from the orthorhombic phase to tetragonal phase with the increase of the content of LiNbO3, and the orthorhombic and tetragonal phase co-exist in (K0.5Na0.5)NbO3-LiNbO3 ceramics when the content of LiNbO3 is about 0.06 mol. The sintering temperature of (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 decreases with the increase of the content of LiNbO3. The optimum composition for (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 ceramics is 0.94(K0.5Na0.5)NbO3-0.06LiNbO3. The optimum sintering temperature of 0.94(K0.5Na0.5)NbO3-0.06LiNbO3 ceramics is 1080 °C. Piezoelectric properties of 0.94 (K0.5Na0.5)NbO3-0.06LiNbO3 ceramics under the optimum sintering temperature are piezoelectric constant d33 of 215 pC/N, planar electromechanical coupling factor kp of 0.41, thickness electromechanical coupling factor kt of 0.48, the mechanical quality factor Qm of 80, the dielectric constant of 530 and the Curie temperature Tc = 450 °C, respectively. The results indicate that 0.94(K0.5Na0.5)NbO3-0.06LiNbO3 piezoelectric ceramics is a promising candidate for lead-free piezoelectric ceramics.  相似文献   

3.
The addition of a small amount of CuO to the 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 (0.95NKN-0.05CT) ceramics sintered at 960 °C for 10 h produced a dense microstructure with large grains due to the liquid phase sintering. Due to the negligible Na2O evaporation, poling was easy for all specimens sintered at 960 °C. The piezoelectric properties of the specimens were considerably influenced by the relative density, grain size and liquid phase amount. The high piezoelectric properties of d33 = 200 pC/N, kp = 0.37, and Qm = 350 were obtained for the 0.95NKN-0.05CT ceramics containing 2.0 mol% CuO sintered at 960 °C for 10 h. Therefore, the 0.95NKN-0.05CT ceramics containing a small amount of CuO are a good candidate material for lead-free piezoelectric ceramics.  相似文献   

4.
Lead-free (Na0.65K0.35)NbO3 + wt.% Co2O3 (KNN-xCo) piezoceramics were synthesized by conventional ceramic processing and the effects of low Co2O3 concentration on the microstructure and electrical properties were investigated. The experimental results show that the orthorhombic-tetragonal phase transition temperature (TO-T) decreases slightly whereas the tetragonal-cubic phase transition temperature (TC) and crystal structure keep unchanged with the increasing of Co2O3 content. The doping of Co2O3 facilitates the grain growth and improves the density and piezoelectric properties of the ceramics. The sample of x = 0.2 exhibits good piezoelectric properties of piezoelectric coefficient d33 = 127pC/N and electromechanical coupling coefficient kp = 35.1% with density of ρ = 4.31/cm3. These results strongly suggest that the composition of (Na0.65K0.35)NbO3 is another promising lead-free candidate for investigation besides (Na0.5K0.5)NbO3 system.  相似文献   

5.
(1 − x) (0.95K0.5Na0.5NbO3-0.05LiSbO3)-xBiScO3 lead-free piezoceramics have been fabricated by an ordinary pressure-less sintering process. The relationship between the BS content, phase structure, density, and piezoelectric properties and their temperature stability was discussed particularly. All compositions show a main perovskite structure, showing room-temperature symmetries of orthorhombic at = 0, of tetragonal at 0.002 ≤ x ≤ 0.01. When 0.002 ≤ x ≤ 0.008, the ceramics have excellent electrical properties of d33 = 265-305 pC/N, kp = 45-54%, ?r = 1346-1638, Curie temperature Tc = 315-370 °C and depolarizing temperature Td = 315-365 °C, comparable to that of other KNN-based piezoceramics. The results indicate that the ceramics are promising lead-free piezoelectric materials.  相似文献   

6.
(K0.5Na0.5)NbO3 (KNN) and 0.995(K0.5Na0.5)NbO3-0.005AETiO3 (AE = Mg, Ca, Sr, Ba) were successfully prepared by conventional ceramic processing and without the cold-isostatic-pressing (CIP) process. The effects of low AETiO3 (AET) concentration on crystal structure, density, dielectric and piezoelectric properties of the KNN based ceramics were evaluated. The results show that adding MgTiO3(MT) and BaTiO3(BT) to KNN can lead to the appearance of a trace amount of second phase(s), reduced density and deteriorated electrical properties. Adding CaTiO3(CT) and SrTiO3(ST) to KNN can promote densification and optimize electrical properties. Two phase transitions at Tt-o ( the temperature at which the phase transition from orthorhombic to tetragonal occurs) and Tc (the Curie temperature) were observed in KNN and all KNN-AET ceramics, by using differential scanning calorimetry (DSC) analysis and dielectric characterization. Adding AET to KNN caused the variations of Tt-o and Tc.  相似文献   

7.
Na0.5K0.5NbO3 (NKN) and 10 mol% (Na,K) excess Na0.5K0.5NbO3 (NKN10) thin films on Pt/Ti/SiO2/Si substrate were prepared by chemical solution deposition. Crystallization of NKN10 thin films was confirmed by X-ray diffraction. The (Na,K) excess Na0.5K0.5NbO3 thin film shows a ferroelectric P-E hysteresis loop. Dielectric properties and impedance spectroscopy of thin films were investigated in the frequency range from 0.1 Hz to 100 kHz and the temperature range of 25 ~ 500 °C. By analyzing the complex impedance relaxation with Cole-Cole plots, we found impedance relaxations for the thin film. The contribution of electrical conduction is discussed in relation to grain, grain boundary, and interface effects.  相似文献   

8.
KxNa1 − xNbO3 ceramic powders have been successfully synthesized in different salts (NaCl, KCl, NaCl-KCl). Our results reveal that KxNa1 − xNbO3 powders with single-phase perovskite structure can be formed at a low temperature such as 750 °C. The type of salts has significant effects on the morphology and chemical composition of the powders. As Na+ has a higher diffusing rate and occupies the A-site in the perovskite structure more easily as compared to K+, the powder contains only a small amount of K+ (x ∼ 0.10) when it is synthesized according to formula K0.5Na0.5NbO3 and in a flux containing the same molar content of Na+ and K+. By using a NaCl or KCl salt, the K+ concentration x can be adjusted to almost 0 and 0.77, respectively.  相似文献   

9.
(1-x)(Na0.5K0.5)NbO3-xBaTiO3 ceramics were prepared by a solid state reaction approach, and their dielectric and ferroelectric properties were evaluated together with the crystal structure. Three phase transitions at Tt1, Tt2 and Tt3 were observed by the combination of DTA analysis and dielectric characterization. These phase transitions corresponded to those of (Na0.5K0.5)NbO3, and they were greatly pulled down by forming solid solution with BaTiO3. The phase transition around Tt1 was incompletely diffusive and the appearance of diffusiveness of non ferro-paraelectric phase transition was an exception. The hysteresis loops changed their shapes from “square” into “thin square” with increasing x.  相似文献   

10.
Lead-free piezoelectric (Bi0.95Na0.75K0.20−xLix)0.5Ba0.05TiO3 ceramics have been prepared by conventional process for different lithium substitutions. The SEM images show that the ceramics are well sintered at 1428 K. Dielectric and ferroelectric measurements have been performed. With the increasing of lithium substitution, the Curie temperature of the (Bi0.95Na0.75K0.20−xLix)0.5Ba0.05TiO3 ceramics shifts from 570 K to 620 K, but the maximum value of the dielectric constant decreases from 6700 to 4700 correspondingly. A relatively larger remanent polarization of 36.8 μC/cm2 has been found in the x = 0.05 sample. The coercive field decreases as the lithium substitution amount increases. An optimized d33 = 194 × 10− 12 C/N and a relative dielectric constant εr = 1510 have been obtained in (Bi0.95Na0.75K0.15Li0.05)0.5Ba0.05TiO3.  相似文献   

11.
(1−x)(0.948 K0.5Na0.5NbO3-0.052LiSbO3)-xBiAlO3 (KNNLS-xBA) lead-free piezoceramics were synthesized by conventional solid state reaction method. The compositional dependence of phase structure and electrical properties of the ceramics was systemically studied. XRD patterns revealed that all the ceramic samples possessed pure perovskite structure. In addition, polymorphic phase transition (PPT) for the ceramics with BA doping could not be observed in the measuring range from room temperature to 500 °C. Within the studied range of BA addition, the ceramics with x = 0.002 represented a relatively desirable balance between the degradation of the piezoelectric properties, improvement in temperature stability and mechanical quality factor. It was found that the KNNLS-0.002BA ceramics exhibited optimum overall properties (d33 = 233 pC/N, kp = 35%, tanδ = 0.047, Pr = 27.3 μC/cm2, Qm = 56 and Tc = 349 °C), suggesting that this material should be a promising lead-free piezoelectric candidate for piezoelectric applications.  相似文献   

12.
Polycrystalline lead-free ceramics (K0.17Na0.83)NbO3 + x wt.% WO3; (x = 0, 1, 3 and 5) have been synthesized via solid state reaction method. X-ray diffraction pattern at room temperature indicates the formation of pure perovskite phase with monoclinic structure for all samples. Dielectric constant versus temperature measurements shows an increase in dielectric constant with a shift in Curie temperature (TC) toward higher temperature side. Remnant polarization (Pr) is found to be enhanced and reached upto 24 μC/cm2 for x = 5 wt.% WO3 from 12.5 μC/cm2 for pure (K0.17Na0.83)NbO3 ceramic. The value of coercive field (Ec) decreases with increasing wt.% of WO3. From optical band gap study, we found blue shift in the band gap of (K0.17Na0.83)NbO3 with increasing concentration of WO3.  相似文献   

13.
The CuO and SnO2 co-modified Na0.52K0.48NbO3 ceramics were prepared by a conventional mixed oxide method. Densification can be further improved but the grain growth is inhibited as a small amount of SnO2 is added into 1% CuO doped Na0.52K0.48NbO3. The results indicate that the physical and various electrical properties of CuO and SnO2 doped Na0.52K0.48NbO3 ceramics significantly depend on sintering conditions and the content of dopants. The ceramics doped with 1 mol% CuO and 1 mol% SnO2 sintered at 1070 °C for 3 h show improved dielectric and piezoelectric properties: d33 = 120 pC/N, kp = 0.38, Qm = 1040, ?r = 710 and tanδ = 0.013 (1 kHz), in comparison with un-doped or CuO doped compositions.  相似文献   

14.
Ceramics in the system (1 − x)(Mg0.95Zn0.05)TiO3-x(Na0.5Nd0.5)TiO3 were prepared by the conventional mixed oxide route. It shows a two-phase system of an ilmenite structured (Mg0.95Zn0.05)TiO3 and a perovskite structured (Na0.5Nd0.5)TiO3, which were confirmed by XRD and EDX. In addition, (Mg0.95Zn0.05)Ti2O5 was identified as a second phase. It was also responsible for a rapid drop in the Q × f value. The temperature coefficient of resonant frequency was a function of compositional ratio. Specimen with x = 0.16 possessed an excellent combination of microwave dielectric properties: εr ~ 24.27, Q × f ~ 82,000 GHz (at 9 GHz) and τf ~ 0 ppm/°C.  相似文献   

15.
CuO-doped 0.98K0.5Na0.5NbO3-0.02BiScO3 (0.98KNN-0.02BS-xCu) lead-free piezoelectric ceramics have been fabricated by ordinary sintering technique. The effects of CuO doping on the dielectric, piezoelectric, and ferroelectric properties of the ceramics were mainly investigated. X-ray diffraction reveals that the samples at doping levels of x ≤ 0.01 possess a pure tetragonal perovskite structure. The specimen doped with 1 mol% CuO exhibits enhanced electrical properties (d33 ~ 207 pC/N, kp ~ 0.421, and kt = 0.424) and relatively high mechanical quality factor (Qm = 288). These results indicate that the 0.98KNN-0.02BS-0.01Cu ceramic is a promising candidate for lead-free piezoelectric ceramics for applications such as piezoelectric actuators, harmonic oscillator and so on.  相似文献   

16.
The binary lead-free piezoelectric ceramics with the composition of (1 − x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 were synthesized by conventional mixed-oxide method. The phase structure transformed from rhombohedral to tetragonal phase in the range of 0.16 ≤ x ≤ 0.20. The grain sizes varied with increasing the Bi0.5K0.5TiO3 content. Electrical properties of ceramics are significantly influenced by the Bi0.5K0.5TiO3 content. Two phase transitions at Tt (the temperature at which the phase transition from rhombohedral to tetragonal occurs) and Tc (the Curie temperature) were observed in all the ceramics. Adding Bi0.5K0.5TiO3 content caused the variations of Tt and Tc. A diffuse character was proved by the linear fitting of the modified Curie-Weiss law. Besides, the ceramics with homogeneous microstructure and excellent electrical properties were obtained at x = 0.18 and sintered at 1170 °C. The piezoelectric constant d33, the electromechanical coupling factor Kp and the dielectric constant ?r reached 144 pC/N, 0.29 and 893, respectively. The dissipation factor tan δ was 0.037.  相似文献   

17.
Effects of Cu doping on the ferroelectric and piezoelectric properties of 0.0038 mol K5.4Cu1.3Ta10O29 modified (K0.5Na0.5)NbO3 ceramics have been investigated. On the basis of analyses on crystal structure and polarization hysteresis, it is suggested that Cu ions reveal amphoteric doping behavior in KNN ceramics. At doping levels up to 1 mol%, the Cu ions substitute pentavalent B-site cations, acting as acceptors that generate O-vacancies to resultantly harden the ceramics. At doping levels above 1.5 mol%, however, Cu ions play a role as donors by replacing monovalent A-site cations. A specimen doped with 0.5 mol% CuO shows an extremely high mechanical quality factor of 3053, which is higher than those of any other reports on KNN-based ceramics.  相似文献   

18.
Lead-free ceramics (1 − x)(K0.5Na0.5)0.95Li0.05Sb0.05Nb0.95O3-xSmAlO3 (KNLNS-xSA) were prepared by conventional sintering technique. The phase structure, dielectric and piezoelectric properties of the ceramics were investigated. All compositions show a main perovskite structure, exhibiting room-temperature symmetries of tetragonal at x ≤ 0.0075, of pseudo-cubic at x = 0.0100. The Curie temperature of KNLNS-xSA ceramics decreases with increasing SmAlO3 content. Moreover, the addition of SmAlO3 can effectively broaden the sintering temperature range of the ceramics. The KNLNS-xSA ceramic with x = 0.0050 has an excellent electrical behavior of piezoelectric coefficient d33 = 226 pC/N, planar mode electromechanical coupling coefficient kp = 38%, dielectric loss tan δ = 3.0%, mechanical quality factor Qm = 60, and Curie temperature TC = 327 °C, suggesting that this material could be a promising lead-free piezoelectric candidate for piezoelectric applications.  相似文献   

19.
(K0.5Na0.5)NbO3 powders and ceramics were prepared by a novel hybrid method of sol–gel and ultrasonic atomization, in which Nb2O5 was used as the niobium source to replace those expensive soluble niobium salts. X-ray diffraction and thermal analysis were performed to investigate the synthesis process and phase transformation behavior of (K0.5Na0.5)NbO3 powders. The results showed that (K0.5Na0.5)NbO3 powders with a reasonably fine particle size and single-phase perovskite structure were formed at a temperature as low as 650 °C. Dense (K0.5Na0.5)NbO3 ceramics with a relative density of 93% were obtained using the refined powders. The (K0.5Na0.5)NbO3 ceramics prepared by the novel hybrid method exhibited relatively good properties (d33 = 90 pC/N, kp = 0.32, Pr = 20.6 μC/cm2, Tc = 405 °C, εr = 712), suggesting that this novel hybrid method might be a promising method for the powders and ceramics preparation.  相似文献   

20.
T. Yu  K.W. Kwok  H.L.W. Chan 《Materials Letters》2007,61(10):2117-2120
(1 − x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 [BNT-BKT-100x] thin films have been successfully deposited on Pt/Ti/SiO2/Si substrates by a sol-gel process together with rapid thermal annealing. A morphotropic phase boundary (MPB) between Bi0.5Na0.5TiO3 and Bi0.5K0.5TiO3 was determined around x ∼ 0.15. Near the MPB, the film exhibits the largest grain size, the highest ε value (360) and the largest Pr value (13.8 μC/cm2). The BNT-BKT thin film system is expected to be a new and promising candidate for lead-free piezoelectric applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号