首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用显微组织观察、力学性能试验、摩擦磨损试验等方法,研究了1 000~1 100℃热挤压后Cu-17Ni-3Al-X合金的显微组织、力学性能和耐磨性能。结果表明:热挤压变形后合金的耐磨性比铸态合金的有显著提高,随挤压温度升高,合金耐磨性降低,1 000℃时,合金获得最佳的耐磨性能;随挤压温度升高,合金抗拉强度和硬度总体呈下降趋势,但伸长率总体呈上升趋势;挤压温度为1 075℃时,合金抗拉强度达994 MPa,伸长率达8%,硬度为292 HBS,基体显微硬度为319HV,分别比铸态合金提高了31%,280%,7%和11%;热挤压态合金耐磨性相对铸态合金大幅度提高的主要原因是热挤压变形细化了合金的晶粒,减弱了合金的粘着磨损,合金的主要磨损机理是粘着磨损和磨粒磨损。  相似文献   

2.
在不同变形温度(275~350℃)和应变速率(5~25s~(-1))下,采用单道次大变形量(80%)轧制ZK60镁合金,研究了变形温度和应变速率对合金显微组织和拉伸性能的影响。结果表明:随着变形温度的升高和应变速率的增大,合金的再结晶体积分数增加;当变形温度不高于300℃时,随着应变速率的增大,再结晶晶粒尺寸先减小后增大,抗拉强度先增后降,伸长率增大;而当温度高于300℃时,再结晶晶粒尺寸先增大后减小再增大,抗拉强度先降低后增大再降低,伸长率增大;在温度300℃,应变速率10s~(-1)下轧制后,所得ZK60镁合金板的拉伸性能最好,抗拉强度和伸长率分别为358 MPa,21.5%。  相似文献   

3.
对铸态Mg-0.6%Zr合金进行了等通道转角挤压(ECAP)变形,采用光学显微镜观察了变形后合金的显微组织,并对不同温度、不同道次变形后的合金进行了显微硬度、抗拉强度及阻尼性能测定。结果表明:合金经过ECAP变形后,发生了动态再结晶,晶粒显著细化,但随挤压温度的升高发生晶粒长大;显微硬度随挤压道次的增加而增大,抗拉强度在300℃挤压6道次时达到最大值187.80 MPa;合金经400℃挤压1道次后的阻尼性能优于铸态合金的,其他条件下均低于铸态合金的。  相似文献   

4.
对2297-T87铝锂合金在25~175℃下进行了拉伸试验,研究了温度对该合金拉伸性能的影响,观察了拉伸后的显微组织。结果表明:随着温度升高,合金的抗拉强度和屈服强度降低,伸长率增大;当温度升至175℃时,合金的抗拉强度和屈服强度为室温(25℃)时的77.72%和82.03%,合金仍具有较高的强度;在25~175℃拉伸后,合金的显微组织相似,均主要由轧制变形晶粒和少量细小再结晶晶粒组成。  相似文献   

5.
通过对Mg-3Al-1Sn合金(AT31)进行挤压以及后续的单道次大应变量轧制变形,得到强度和塑性兼备的新型变形镁合金板材。组织分析表明,AT31合金中析出了一定数量的Mg17Al12相和Mg2Sn相,挤压态合金经轧制之后晶粒均得到有效的细化,因此合金的强度显著提高。经250℃低温轧制后,AT31合金的晶粒尺寸细化最明显,单道次约58%应变量之后晶粒尺寸约4.72μm;随着应变量提升至约66%,AT31合金的晶粒尺寸略有长大,约4.94μm。经300℃下轧制之后,最低晶粒尺寸可达到约5.58μm;同样,随着应变量的增加,晶粒尺寸先显著降低后有所上升。与此对应,这与拉伸所测的屈服强度变化规律完全一致的,即符合经典的细晶强化理论。经过250℃温度下的单道次约58%大应变量轧制变形后,Mg-3Al-1Sn合金板材的抗拉强度及伸长率匹配性最优,屈服强度约185 MPa,抗拉强度约256 MPa,伸长率约29.2%,具备优异的强塑性兼备特性。鉴于此,Mg-Al-Sn合金在工业中有着广阔的应用潜力。  相似文献   

6.
新型TA32钛合金板的高温拉伸变形行为   总被引:1,自引:0,他引:1  
在变形温度650~850℃、应变速率0.001~0.100s-1条件下对TA32钛合金板进行高温拉伸试验,研究了变形温度和应变速率对合金高温拉伸变形行为的影响;基于修正的Hooke定律和Grosman方程建立TA32钛合金的高温流变本构方程并进行试验验证。结果表明:TA32钛合金的流变应力受变形温度和应变速率的影响显著,变形温度的升高和应变速率的降低均会使流变应力减小;在变形温度650℃、应变速率0.100s-1下,合金的抗拉强度为680 MPa,约为常温抗拉强度的80%,合金仍具有较高的强度;当变形温度由750℃升至850℃时,合金伸长率的增长幅度和强度的下降幅度均较明显,合金塑性较好;采用建立的高温流变本构方程计算得到的真应力-真应变曲线与试验结果基本吻合,其相关系数和平均相对误差分别为0.979 4和11.1%,该本构模型可较好地描述TA32钛合金的高温拉伸变形行为。  相似文献   

7.
利用固相再生方法在挤压温度为450℃,挤压比分别为11.1:1、25:1和44.4:1的条件下,将ZM6镁合金屑制备成试样,然后进行微观组织观察和力学性能测试。结果表明:ZM6耐热镁合金在挤压过程中发生部分动态再结晶,挤压比越大,动态再结晶程度越大;合金的抗拉强度和延伸率随挤压比的增大而增大,当挤压比从11.1:1提高到44.4:1时,抗拉强度从204MPa提高到248MPa,延伸率从20.7%提高到27.5%。T6态合金的抗拉强度高于挤压态合金的抗拉强度,T6态合金的延伸率低于挤压态合金的延伸率。  相似文献   

8.
冷变形时效对Ni36CrTiAl合金组织与力学性能的影响   总被引:1,自引:0,他引:1  
研究了Ni36CrTiAl合金冷轧后经650,670,700和720℃时效以及950℃固溶再进行650℃时效处理对组织与性能的影响.结果表明:随冷变形后时效温度的升高,胞状γ'相长大明显,650℃时效后胞状γ'相的直径为30~60 nm,720℃时效后为60~140 nm;冷变形后时效析出的胞状γ'相比固溶后时效析出的数量多,尺寸大;冷变形后时效合金的强度和塑性随时效温度的升高而下降;固溶时效后的抗拉强度和屈服强度分别比冷变形时效降低了26.2%和45.3%,但断后伸长率却增加了1.2倍.  相似文献   

9.
轧制变形量对LAZ1201镁锂合金显微组织及力学性能的影响   总被引:1,自引:0,他引:1  
在真空熔炼炉中于氩气气氛保护下熔炼出Mg-12Li-0.5Al-1Zn(LAZ1201)合金铸锭,开坯后进行了不同变形量(30%,50%,70%)的热轧,研究了轧制变形量对合金显微组织及力学性能的影响,并对铸态和轧制态室温拉伸断口形貌进行了观察。结果表明:随着变形量的增大,合金发生了不完全动态再结晶,晶粒细化,合金的抗拉强度逐渐升高,伸长率先大幅升高,然后有所下降;当轧制变形量为70%时,抗拉强度可达166MPa;轧制变形量为30%时,合金的塑性最好,伸长率可达50%;铸态和轧制态合金的室温拉伸断口上均存在大量等轴韧窝,为韧性断裂。  相似文献   

10.
对挤压态和冷轧态Gr.38钛合金管分别进行了不同温度下的固溶+时效和退火热处理,研究了热处理温度对其显微组织和拉伸性能的影响。结果表明:挤压管经固溶处理后的组织为由初生α相和β相转变组织组成的双相组织,固溶+时效处理后的抗拉强度和屈服强度随时效温度的升高先增后降,伸长率和断面收缩率则呈上升趋势;经900℃×1h固溶+500℃×4h时效处理后,挤压管达到最佳的强塑性匹配,抗拉强度、屈服强度、伸长率、断面收缩率分别为1 135 MPa,912 MPa,17%,45%;冷轧管经退火处理后的显微组织由等轴α相和晶间β相组成,随着退火温度的升高,其抗拉强度、屈服强度逐渐降低,伸长率逐渐增大;在830℃退火1h后伸长率最高,达到27%,抗拉强度和屈服强度分别为937,807 MPa。  相似文献   

11.
用机械合金化法制取Mo-8wt%Cu纳米复合粉末, 采用液相烧结和后处理工艺制备了全致密Mo-8wt%Cu合金. 通过扫描电镜对Mo-Cu液相烧结和变形加工后合金显微组织进行了分析, 研究了各种工艺参数对Mo-Cu合金致密性、 拉伸强度和延伸率的影响. 结果表明, 高能球磨的Mo-8wt%Cu纳米复合粉末坯体, 经液相烧结后, 其烧结态为Mo和Cu的复合网状组织, 在1 250 ℃烧结30 min, 可获得相对密度高达98.6%的Mo-Cu合金. 再经静液挤压和旋转锻造变形加工处理后, 可获得全致密的Mo-8wt%Cu合金. 在室温静液挤压40%形变率的条件下, 其拉伸强度可达576 MPa, 延伸率为5.8%.  相似文献   

12.
研究了15%SiC铝基复合材料等温变形后的显微组织和室温拉伸性能的变化,得出结论为在经过等温变形后晶粒有一定的变化,但程度较小,变形速度加快时SiC颗粒的分布出现局部的聚集现象;而拉伸性能随总变形量的增大而提高,变形温度升高和变形速度加快时拉伸性能降低,而变形火次的影响很小。  相似文献   

13.
以Zn-25Al合金为基体材料,通过常规铸造方法制备了不同稀土含量的锌铝合金。采用金相显微镜、扫描电镜、拉伸试验机、硬度计等分析研究了稀土Y对试验合金显微组织和力学性能的影响。试验结果表明,添加稀土钇后,在锌铝合金中,其与Al、Zn等元素形成硬度高、热硬性好的复杂成分化合物且分散于晶界和枝晶中,细化了组织,有效地阻碍了高温时基体的变形和晶界移动。随着钇含量的增加,在室温、100℃和180℃3个温度下合金的抗拉强度和硬度基本上呈先升后降的趋势。当钇含量为0.6%时合金的综合性能最好,高温强度和硬度提高显著。180℃时的抗拉强度比不加Y时提高33.3%,硬度提高64.9%。当钇含量超过0.6%时力学性能下降。  相似文献   

14.
CrCoNi中熵合金在准静态拉伸下具有良好的强度和塑性,而其动态拉伸力学行为还有待研究。利用霍普金森拉杆分别对CrCoNi中熵合金试样进行了室温(298 K)和低温(77 K)下不同应变率的动态拉伸力学行为研究,建立了修正的J-C(Johson-Cook)本构模型对其塑性流动行为进行了较好的描述,通过断后样品的微观组织表征揭示了其变形机理。结果表明:室温下CrCoNi中熵合金的强度和塑性随着应变率增大逐渐提高。与准静态拉伸相比,动态拉伸应变率为1 200~5 000 s-1时,试样的屈服强度增大至560 MPa到1 150 MPa,伸长率增长至60%到90%;低温下强度表现出相似的应变率效应且强度较室温下更高,但韧性有所降低。变形机理结果表明:相比于室温准静态,室温动态拉伸下试样内部孪晶密度更大且交叉孪晶出现、FCC→HCP相变发生、纳米晶形成,三者共同作用促使CrCoNi中熵合金加工硬化提高;相比于室温动态拉伸,低温动态拉伸下试样孪晶密度过大导致孪晶增厚,且纳米晶形成,促使试样加工硬化进一步提高,而孪晶增厚加强了对位错的阻碍致使韧性降低。  相似文献   

15.
Mg-12Gd-3Y-0.5Zr镁合金的显微组织、力学性能及时效析出相   总被引:1,自引:0,他引:1  
通过光学显微镜、扫描电子显微镜、透射电镜、X射线衍射仪、高温拉伸试验机等对不同状态下Mg-12Gd-3Y-0.5Zr镁合金的显微组织、高温力学性能及时效析出相进行了分析。结果表明:该合金铸态组织由α-Mg固溶体、Mg5Gd析出相及α-Mg+Mg24Y5共晶体组成;挤压变形后合金的晶粒尺寸明显减小;合金挤压轧制板材在常温及150℃时有较高的抗拉强度,当温度进一步升高时强度下降较快;合金轧制板材时效析出相在高温(高于250℃)拉伸过程中没有发生相变,但在拉伸过程中会改变分布及形貌,使得变形抗力减小。  相似文献   

16.
冷变形和热处理对Ag-4Pd键合合金线性能影响   总被引:1,自引:0,他引:1  
通过对Ag-4Pd键合合金线冷加工和热处理过程中的微观组织与性能进行研究,分析了冷变形加工率和热处理温度对Ag-4Pd键合合金线力学性能、组织结构和熔断电流的影响。研究结果表明:Ag-4Pd键合合金线随冷加工率增长,强度增加,伸长率降低,滑移和孪生变形为主要形变类型;随着热处理温度的增加,?0.050 mm Ag-4Pd键合合金线拉断力下降,伸长率增加,525℃热处理时,Ag-4Pd键合合金线具有优秀的力学性能;进一步增加热处理温度,Ag-4Pd键合合金线出现孪晶组织,且孪生形核及亚晶吞并长大形核为主要形核方式;热处理过程中施加在线材上的拉紧力过大,导致Ag-4Pd键合合金线表面呈凹凸不平的微小竹节状;经试验数据拟合,Ag-4Pd键合合金线电阻值随热处理温度升高而降低,其熔断电流与熔断时间之间存在指数函数关系,Ag-4Pd键合合金线熔断电流与弧长之间存多项式函数关系。  相似文献   

17.
利用激光选区熔化(Selective laser melting,SLM)技术制备了GH3536镍基高温合金,研究了不同热等静压(Hot isostatic pressing,HIP)温度对SLM成形GH3536合金裂纹和组织性能的影响。利用X射线衍射仪(X-ray diffraction,XRD)、扫描电镜(Scanning electron microscope,SEM)、电子背散射衍射(Electron backscatter diffraction,EBSD)、电子探针显微分析仪(Electron probe microanalyzer,EPMA)等方式表征了GH3536相组成和组织演变,利用高温持久性能试验机测试合金室温和高温拉伸性能。结果表明:经HIP后,SLM成形GH3536合金相组成保持不变,均为γ相,但晶格常数降低,且随着HIP温度的升高而降低。SLM态合金中存在10~100μm的微裂纹和气孔缺陷,微裂纹主要存在于熔池边界。经HIP后,合金中微裂纹完全消除,但仍存在少量孔洞。GH3536合金经高温高压处理后,晶粒尺寸增大,抗拉强度有所降低。其中SLM态试样室温抗拉强度...  相似文献   

18.
采用在5000kN液压机上进行了AZ91D合金管件的挤压成形工艺生产试验研究,研究了挤压温度、模具预热温度、润滑剂、挤压比等工艺参数在镁合金管件挤压过程中的影响并确定了管件挤压合理的工艺参数。试验得出,挤压成形镁合金管件具有较好的力学性能:抗拉强度吼在289.7~308.9MPa之间,屈服强度σ。在276.106-288.795MPa之间,伸长率占在7.5%~10.1%之间。  相似文献   

19.
为了消除重力铸造ZL401铝合金管坯中的孔洞、疏松等缺陷,改善其组织并提高力学性能,对其进行楔形压制(最大变形量为40%),并对其微观组织、力学性能和拉伸断口进行了研究。结果表明:楔形压制能明显压合甚至消除重力铸造产生的孔洞和疏松,随变形程度增大,其强度和伸长率均增大,抗拉强度、伸长率和相对密度分别从从楔压前的161MPa,3.3%,94.3%提高到232MPa,7.2%,99.5%;断裂方式由脆性断裂向韧性断裂转变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号