首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the first direct capacitance measurements of silicon nanowires (SiNWs) and the consequent determination of field carrier mobilities in undoped-channel SiNW field-effect transistors (FETs) at room temperature. We employ a two-FET method for accurate extraction of the intrinsic channel resistance and intrinsic channel capacitance of the SiNWs. The devices used in this study were fabricated using a top-down method to create SiNW FETs with up to 1000 wires in parallel for increasing the raw capacitance while maintaining excellent control on device dimensions and series resistance. We found that, compared with the universal mobility curves for bulk silicon, the electron and hole mobilities in nanowires are comparable to those of the surface orientation that offers a lower mobility.  相似文献   

2.
A new process has been developed to grow silicon (Si) nanowires (NWs), and their growth mechanisms were explored and discussed. In this process, SiNWs were synthesized by simply oxidizing and then reducing Si wafers in a high temperature furnace. The process involves H2, in an inert atmosphere, reacts with thermally grown SiO2 on Si at 1100 °C enhancing the growth of SiNWs directly on Si wafers. High-resolution transmission electron microscopy studies show that the NWs consists of a crystalline core of ~25 nm in diameter and an amorphous oxide shell of ~2 nm in thickness, which was also supported by selected area electron diffraction patterns. The NWs synthesized exhibit a high aspect ratio of ~167 and room temperature phonon confinement effect. This simple and economical process to synthesize crystalline SiNWs opens up a new way for large scale applications.  相似文献   

3.
Metal-organic frameworks (MOFs) and silicon nanowires (SiNWs) have been extensively studied due to their unique properties; MOFs have high porosity and specific surface area with well-defined nanoporous structure, while SiNWs have valuable one-dimensional electronic properties. Integration of the two materials into one composite could synergistically combine the advantages of both materials and lead to new applications. We report the first example of a MOF synthesized on surface-modified SiNWs. The synthesis of polycrystalline MOF-199 (also known as HKUST-1) on SiNWs was performed at room temperature using a step-by-step (SBS) approach, and X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy elemental mapping were used to characterize the material. Matching of the SiNW surface functional groups with the MOF organic linker coordinating groups was found to be critical for the growth. Additionally, the MOF morphology can by tuned by changing the soaking time, synthesis temperature and precursor solution concentration. This SiNW/MOF hybrid structure opens new avenues for rational design of materials with novel functionalities.   相似文献   

4.
Hong KH  Kim J  Lee SH  Shin JK 《Nano letters》2008,8(5):1335-1340
One of the major challenges toward Si nanowire (SiNW) based photonic devices is controlling the electronic band structure of the Si nanowire to obtain a direct band gap. Here, we present a new strategy for controlling the electronic band structure of Si nanowires. Our method is attributed to the band structure modulation driven by uniaxial strain. We show that the band structure modulation with lattice strain is strongly dependent on the crystal orientation and diameter of SiNWs. In the case of [100] and [111] SiNWs, tensile strain enhances the direct band gap characteristic, whereas compressive strain attenuates it. [110] SiNWs have a different strain dependence in that both compressive and tensile strain make SiNWs exhibit an indirect band gap. We discuss the origin of this strain dependence based on the band features of bulk silicon and the wave functions of SiNWs. These results could be helpful for band structure engineering and analysis of SiNWs in nanoscale devices.  相似文献   

5.
Huang Z  Zhang X  Reiche M  Liu L  Lee W  Shimizu T  Senz S  Gösele U 《Nano letters》2008,8(9):3046-3051
Large-area high density silicon nanowire (SiNW) arrays were fabricated by metal-assisted chemical etching of silicon, utilizing anodic aluminum oxide (AAO) as a patterning mask of a thin metallic film on a Si (100) substrate. Both the diameter of the pores in the AAO mask and the thickness of the metal film affected the diameter of SiNWs. The diameter of the SiNWs decreased with an increase of thickness of the metal film. Large-area SiNWs with average diameters of 20 nm down to 8 nm and wire densities as high as 10 (10) wires/cm (2) were accomplished. These SiNWs were single crystalline and vertically aligned to the (100) substrate. It was revealed by transmission electron microscopy that the SiNWs were of high crystalline quality and showed a smooth surface.  相似文献   

6.
Lin L  Sun X  Tao R  Feng J  Zhang Z 《Nanotechnology》2011,22(7):075203
Here we prepared vertical and single crystalline porous silicon nanowire (SiNW) arrays using the silver-assisted electroless etching method. The selenization was carried out by annealing the samples in vacuum with selenium atmosphere. The selenization treatment at 700?°C is useful for investigating the photoluminescence (PL) properties of porous SiNWs, with an enhancement of 30 times observed. The observed PL peaks blue-shift to 650 nm and the decomposition of the spectrum reveals that three PL bands with different origins are obtained. It is proved that selenization treatment could remove the Si-H bonds on the surface and form Si-Se bonds, which could increase the absorbance of the SiNWs and also enhance the stability of the PL intensity. These Se-treated porous SiNWs may be useful as nanoscale optoelectronic devices.  相似文献   

7.
Silicon nanowires (SiNW) were formed on large grained, electron-beam crystallized silicon (Si) thin films of only ~6 μm thickness on glass using nanosphere lithography (NSL) in combination with reactive ion etching (RIE). Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) studies revealed outstanding structural properties of this nanomaterial. It could be shown that SiNWs with entirely predetermined shapes including lengths, diameters and spacings and straight side walls form independently of their crystalline orientation and arrange in ordered arrays on glass. Furthermore, for the first time grain boundaries could be observed in individual, straightly etched SiNWs. After heat treatment an electronic grade surface quality of the SiNWs could be shown by X-ray photoelectron spectroscopy (XPS). Integrating sphere measurements show that SiNW patterning of the multicrystalline Si (mc-Si) starting thin film on glass substantially increases absorption and reduces reflection, as being desired for an application in thin film photovoltaics (PV). The multicrystalline SiNWs directly mark a starting point for research not only in PV but also in other areas like nanoelectronics, surface functionalization, and nanomechanics.  相似文献   

8.
Utilizing sp3d5s* tight-binding band structure and wave functions for electrons and holes we show that acoustic phonon limited hole mobility in [110] grown silicon nanowires (SiNWs) is greater than electron mobility. The room temperature acoustically limited hole mobility for the SiNWs considered can be as high as 2500 cm2/V s, which is nearly three times larger than the bulk acoustically limited silicon hole mobility. It is also shown that the electron and hole mobility for [110] grown SiNWs exceed those of similar diameter [100] SiNWs, with nearly 2 orders of magnitude difference for hole mobility. Since small diameter SiNWs have been seen to grow primarily along the [110] direction, results strongly suggest that these SiNWs may be useful in future electronics. Our results are also relevant to recent experiments measuring SiNW mobility.  相似文献   

9.
Label-free, sensitive, and real-time c-reactive protein (CRP) sensor was fabricated using p-type silicon nanowire (SiNW) based structures configured as field effect transistors (FET) using the conventional 'top-down' semiconductor processes. The width of SiNWs were distributed 80 nm to 400 nm. Among them to improve signal-to-noise ratio and sensitivity of SiNW FET, 221 nm-SiNW was chosen for biosensing of CRP. Antibody of c-reactive protein (anti-CRP) was immobilized on the SiNW surface through polydimethylsiloxane (PDMS) microfluidic channel for detection of CRP. Specific binding of CRP with anti-CRP on the SiNW surface caused a conductance change of SiNW FET and various injections from 10 and 1 microg/ml to 100 ng/ml solutions of CRP resulted in the conductance changes from 39 and 25 to 16%, respectively. Label-free, in-situ and very sensitive electrical detection of CRP was demonstrated with the prepared SiNW FET.  相似文献   

10.
High density vertically aligned and high aspect ratio silicon nanowire (SiNW) arrays have been fabricated on a Si substrate using a template and a catalytic etching process. The template was formed from polystyrene (PS) nanospheres with diameter 30–50 nm and density 1010/cm2, produced by nanophase separation of PS-containing block-copolymers. The length of the SiNWs was controlled by varying the etching time with an etching rate of 12.5 nm/s. The SiNWs have a biomimetic structure with a high aspect ratio (∼100), high density, and exhibit ultra-low reflectance. An ultra-low reflectance of approximately 0.1% was achieved for SiNWs longer than 750 nm. Well-aligned SiNW/poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) heterojunction solar cells were fabricated. The n-type silicon nanowire surfaces adhered to PEDOT:PSS to form a core-sheath heterojunction structure through a simple and efficient solution process. The large surface area of the SiNWs ensured efficient collection of photogenerated carriers. Compared to planar cells without the nanowire structure, the SiNW/PEDOT:PSS heterojunction solar cell exhibited an increase in short-circuit current density from 2.35 mA/cm2 to 21.1 mA/cm2 and improvement in power conversion efficiency from 0.4% to 5.7%.   相似文献   

11.
Ng MF  Sullivan MB  Tong SW  Wu P 《Nano letters》2011,11(11):4794-4799
First-principles density functional theory calculations on hydrogenated silicon nanowires (SiNWs) with diameters up to 7.3 nm are carried out for comparing to experimentally relevant SiNWs and evaluating its radial doping profiles. We show that the direct band gap nature of both the small diameter (110) and (100) SiNWs fades when the diameter reaches beyond about 4 nm, where the difference of direct and indirect band gaps are close, within the experimental measurement uncertainty of ±0.1 eV, suggesting the diameter size where the gap nature transition starts. In addition, we reveal that core-surface boron (B) codoped SiNW forms more preferably at large diameter than that of the surface-surface codoped one, attributing to the lower energy configuration raised by the core B dopant at large diameter SiNW. More importantly, the diameter for such a preferential transition increases as the doping concentration decreases. Our results rationalize photoluminescent measurements and radial doping distributions of SiNWs.  相似文献   

12.
Nanostructures, which have sizes comparable to biological functional units involved in cellular communication, offer the potential for enhanced sensitivity and spatial resolution compared to planar metal and semiconductor structures. Silicon nanowire (SiNW) field-effect transistors (FETs) have been used as a platform for biomolecular sensors, which maintain excellent signal-to-noise ratios while operating on lengths scales that enable efficient extra- and intracellular integration with living cells. Although the NWs are tens of nanometers in diameter, the active region of the NW FET devices typically spans micrometers, limiting both the length and time scales of detection achievable with these nanodevices. Here, we report a new synthetic method that combines gold-nanocluster-catalyzed vapor-liquid-solid (VLS) and vapor-solid-solid (VSS) NW growth modes to produce synthetically encoded NW devices with ultrasharp (<5 nm) n-type highly doped (n(++)) to lightly doped (n) transitions along the NW growth direction, where n(++) regions serve as source/drain (S/D) electrodes and the n-region functions as an active FET channel. Using this method, we synthesized short-channel n(++)/n/n(++) SiNW FET devices with independently controllable diameters and channel lengths. SiNW devices with channel lengths of 50, 80, and 150 nm interfaced with spontaneously beating cardiomyocytes exhibited well-defined extracellular field potential signals with signal-to-noise values of ca. 4 independent of device size. Significantly, these "pointlike" devices yield peak widths of ~500 μs, which is comparable to the reported time constant for individual sodium ion channels. Multiple FET devices with device separations smaller than 2 μm were also encoded on single SiNWs, thus enabling multiplexed recording from single cells and cell networks with device-to-device time resolution on the order of a few microseconds. These short-channel SiNW FET devices provide a new opportunity to create nanoscale biomolecular sensors that operate on the length and time scales previously inaccessible by other techniques but necessary to investigate fundamental, subcellular biological processes.  相似文献   

13.
Silicon nanowire (SiNW) arrays irradiated by energetic Si ions were fabricated by metal vapor vacuum arc (MEVVA) ion implantation method. Hetero-structure of amorphous/crystalline nanowire was formed in which structure of the implanted region on the top of the nanowires was amorphous while the structure of unimplanted region on the bottom remained crystal. Field emission (FE) properties of the SiNW arrays could be improved and modulated by different implantation doses. A low turn-on field of 4.63 V/microm was observed in the SiNWs irradiated by 21 keV Si ion with a dose of 7.86 x 10(16)/cm2, and the applied field for the emission current density reaching 100 microA/cm2 is only 5.52 V/microm. The main reason for the efficient emission is attributed to the formation of amorphous SiNWs and structure defects after implantation. The ion irradiated SiNWs after post-annealing at high temperature had better FE property due to eliminating the restrain effect to electrons.  相似文献   

14.
Constructing radial junction hydrogenated amorphous silicon (a-Si:H) solar cells on top of silicon nanowires (SiNWs) represents a promising approach towards high performance and cost-effective thin film photovoltaics. We here develop an all-in?situ strategy to grow SiNWs, via a vapour-liquid-solid (VLS) mechanism on top of ZnO-coated glass substrate, in a plasma-enhanced chemical vapour deposition (PECVD) reactor. Controlling the distribution of indium catalyst drops allows us to tailor the as-grown SiNW arrays into suitable size and density, which in turn results in both a sufficient light trapping effect and a suitable arrangement allowing for conformal coverage of SiNWs by subsequent a-Si:H layers. We then demonstrate the fabrication of radial junction solar cells and carry on a parametric study designed to shed light on the absorption and quantum efficiency response, as functions of the intrinsic a-Si:H layer thickness and the density of SiNWs. These results lay a solid foundation for future structural optimization and performance ramp-up of the radial junction thin film a-Si:H photovoltaics.  相似文献   

15.
A new approach using focused electron beam induced deposition (FEBID) to deposit catalyst particles is reported for the synthesis of single crystalline silicon nanowires (SiNWs) grown by low pressure chemical vapor deposition (LPCVD). The FEBID deposited gold dot arrays fabricated from an acac-Au(III)-Me(2) precursor were investigated by AFM and EDX. The depositions were found to form a sharp tip and a surrounding halo and consist of only 10 at.% Au. However, SiNWs could be synthesized on the deposited catalyst using the vapor-liquid-solid (VLS) method with a mixture of 2% SiH(4) in He at 520?°C. NW diameters from 30 nm up to 150 nm were fabricated and the dependency of the NW diameter on the FEBID deposition time was observed. TEM analysis of the SiNWs revealed a [110] growth direction independent of the NW diameter. This new method provides a maskless and resistless approach for generating catalyst templates for SiNW synthesis on arbitrary surfaces.  相似文献   

16.
Although it has been qualitatively demonstrated that surface roughness can reduce the thermal conductivity of crystalline Si nanowires (SiNWs), the underlying reasons remain unknown and warrant quantitative studies and analysis. In this work, vapor-liquid-solid (VLS) grown SiNWs were controllably roughened and then thoroughly characterized with transmission electron microscopy to obtain detailed surface profiles. Once the roughness information (root-mean-square, σ, correlation length, L, and power spectra) was extracted from the surface profile of a specific SiNW, the thermal conductivity of the same SiNW was measured. The thermal conductivity correlated well with the power spectra of surface roughness, which varies as a power law in the 1-100 nm length scale range. These results suggest a new realm of phonon scattering from rough interfaces, which restricts phonon transport below the Casimir limit. Insights gained from this study can help develop a more concrete theoretical understanding of phonon-surface roughness interactions as well as aid the design of next generation thermoelectric devices.  相似文献   

17.
Liu D  Shi Z  Zhang L  He C  Zhang J  Cheng M  Yang R  Tian X  Bai X  Shi D  Zhang G 《Nanotechnology》2012,23(30):305701
Silicon nanowires (SiNWs) are promising building blocks for future electronic devices. In SiNW-based devices, reducing the contact resistance of SiNW-metal as much as possible is critically important. Here we report a simple fabrication approach for SiNW field effect transistors (FETs) with low contact resistances by employing a heavily doped carrier injection layer wrapped around SiNWs at the contact region. Both n- and p-type SiNW-FET devices with carrier injection layers were investigated, the contact resistances were one order smaller than those without carrier injection layers and only contribute less than 14.8% for n-type devices and 11.4% for p-type devices, respectively, to the total resistance. Such low contact resistance guarantees the device characteristics mainly from the channel region of SiNW-based devices.  相似文献   

18.
Wafer-scale high density aligned p-type silicon nanowire (SiNW) arrays decorated with discrete platinum nanoparticles (PtNPs) have been fabricated by metal assisted electroless etching followed by an electroless platinum deposition process, and systematic investigations of photoelectrochemical behavior of Pt/SiNW were also reported in this study. Coating of PtNPs on SiNW sidewalls yielded a more positive onset potential (Vos), which enhances the photoelectrochemical hydrogen generation performance of the photoelectrodes, though excessive PtNPs deposition leads to a decreased photocurrent. Additionally, we have demonstrated that the photoelectrode consisting of longer SiNWs yielded a higher limiting current. However, when the length of SiNWs was increased further to >4 μm, the limiting current dramatically reduced, which is presumably because an increased interface recombination and scattering resulting from the increased surface area of SiNWs begin to play a dominant role. The results demonstrate Pt/SiNW to be a promising hybrid system for photoelectrochemical water splitting, and device performance may be further improved via optimal conditions of PtNPs deposition time and SiNWs length.  相似文献   

19.
A simple method to release Si nanowires (SiNWs) from a substrate, with their original length almost intact, is demonstrated. By exploiting the unique chemistry involved for the fabrication of vertical arrays of SiNWs in metal‐assisted chemical etching (MaCE) based either on HF/AgNO3 or HF/H2O2 chemistries, wet etching with alkali hydroxides such as NaOH or KOH preferentially attacks the bottom part of the vertical SiNWs. A protective layer of Si oxide is found to exist on the outer wall of the SiNWs and to play the key role of etch mask during the release‐etching by alkali hydroxides. The clean release of SiNWs also enables the repeated use of the Si substrate for the fabrication of vertical SiNW arrays by MaCE. The released SiNWs are further used for the fabrication of field‐effect transistors on a flexible plastic substrate. The method developed here, when combined with a suitable assembling technique, can be very useful in implementing flexible electronics, or in the fabrication of SiNW composites with other functional materials.  相似文献   

20.
The vertical integration of 1D nanostructures onto the 2D substrates has the potential to offer significant performance gains to flexible electronic devices due to high integration density, large surface area, and improved light absorption and trapping. A simple, rapid, and low temperature transfer bonding method has been developed for this purpose. Ultrasonic vibration is used to achieve a low temperature bonding within a few seconds, resulting in a polymer‐matrix‐free, electrically conducting vertical assembly of silicon nanowires (SiNWs) with a graphene/PET substrate. The microscopic structure, and mechanical and electrical characteristics of the interface between the transferred SiNW array and graphene layer are subsequently investigated, revealing that this creates a mechanically robust and electrically Ohmic contact. This newly developed ultrasonic transfer bonding technique is also found to be readily adaptable for diverse substrates of both metal and polymer. It is therefore considered as a valuable technique for integrating 1D vertical nanostructures onto the 2D flexible substrates for flexible photovoltaics, energy storage, and water splitting systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号