首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 416 毫秒
1.
硫分配比在LF精炼渣成分优化中的应用   总被引:2,自引:0,他引:2  
选取Ohta和Suito的经验公式和光学碱度模型计算不同组成成分的四元渣系(Al2O3-CaO-MgO-SiO2)的硫容量与平衡状态下的硫分配比,分析渣中各组元成分变化和钢水温度变化对硫分配比的影响.通过计算首都钢铁集团公司某炼钢厂LF精炼渣的硫容量与硫分配比,来验证计算模型,优化精炼渣成分,以期获得最佳的脱硫效果.  相似文献   

2.
 利用光学碱度计算了1873 K时CaO SiO2 Al2O3 MgO(10%)四元精炼渣系的硫容量,从理论上分析了精炼高级别管线钢超低硫控制的工艺条件,绘制出精炼渣硫容量、渣中硫、钢中溶解氧与钢中硫的关系图。分析了某钢厂LF VD高级别管线钢生产工艺,LF1(LF炉精炼初期)、LF2(LF炉精炼末期)和VD精炼渣的氧化能力w((MnO+FeO))分别为11.92%、2.00%和1.10%,精炼渣碱度分别为3.195、6.250和7.600,精炼渣的曼内斯曼指数M(R/w(Al2O3))分别为0.09、0.17和0.18,精炼渣硫容量CS′分别为0.010、0.022和0.023。钢中硫的质量分数从LF1的80×10-6,降低到LF2的(20~30)×10-6 ,并稳定在VD末期的20×10-6以下,与理论计算相符。  相似文献   

3.
 研究了某厂冶炼20CrMnTiH钢所用精炼渣的成分变化对钢液中w(T[O])与夹杂物成分的影响。基于Factsage软件探讨了精炼渣成分变化对钢液中w(T[O])的影响机制,指出精炼渣碱度R、w(CaO)/w(Al2O3)以及MI指数是通过改变渣中的Al2O3活度与CaO活度,提高精炼渣的“Al2O3”容量,以达到降低w(T[O])的目的,并在此基础上提出了适合冶炼20CrMnTiH钢的精炼渣系成分(质量分数):CaO 50%~55%,Al2O3 30%~35%,SiO2 6%~8%,MgO 5%~8%,其他不超过3%。通过工业试验发现,使用此渣系后铸坯中的w(T[O])降至10×10-6。  相似文献   

4.
LF精炼过程中顶渣硫容量、分配比和脱硫率的确定   总被引:8,自引:1,他引:8  
为了确定LF精炼过程中顶渣的脱硫能力,通过对光学碱度的计算,得出了1627℃时CaO-SiO2-Al2O3-MgO(5%)渣系组成与硫容量的关系图。由硫容量、氧活度(与钢中溶解铝平衡值)计算出硫分配比,绘出了不同硫分配比时脱硫率与渣量的关系图,提出了一个由已知渣组成、渣量、钢液氧活度和硫含量来计算LF精炼过程中最大脱硫率的简便方法。  相似文献   

5.
 根据冶金熔体的共存理论,计算了CaO-MgO-MnO-FeO-SiO2-Al2O3六元渣系各组元的作用浓度。结合生产实际数据,建立了LF精炼过程中精炼渣成分和w[Al]之间氧化还原反应的数学模型,计算了精炼渣成分对w[Al]的影响。结果表明,LF精炼过程中w[Al]受w[Si]、w(FeO)联合控制。低碱度、低Al2O3含量的精炼渣对控制w[Al]有利,如果精炼渣碱度控制在0. 9,Al2O3含量(质量分数,下同)控制在3%以下,则可以将w[Al]控制在6×10-6以下。适当提高FeO含量有利于降低w[Al]。  相似文献   

6.
通过现场取样分析和热力学计算,评价了工业化生产GCr15轴承钢LF精炼工序的脱硫能力.分析了精炼温度、钢中酸溶铝含量、精炼渣的光学碱度对LF精炼过程硫分配比的影响.由于实际精炼过程中脱硫反应未达到平衡,实际测得的硫分配比低于理论计算值.得到了精炼温度为1 830~1 855 K,钢中酸溶铝的质量分数为0.020%~o.050%,精炼渣光学碱度在0.760~0.795范围内,精炼温度、钢中酸溶铝、渣的光学碱度及渣中Al2O3、SiO2含量对硫分配比影响的回归方程,该方程可作为实际生产条件下LF精炼工序脱硫能力的评价依据.根据回归方程,设计了改变精炼渣组成的3因素4水平正交实验,分析了精炼渣二元碱度R2及Al2O3和SiO2含量对硫分配比的影响,得出渣-钢间最优硫分配比的精炼渣组成(质量分数)为:CaO 55.11%,Al2O3 30%,SiO26.89%,MgO 8%,光学碱度为0.777.  相似文献   

7.
超低硫管线钢的生产及脱硫参数分析   总被引:1,自引:0,他引:1  
余健  李晶 《炼钢》2009,25(3)
通过铁水预处理→BOF→LF→VD→CC流程生产低硫钢,VD后可稳定控制钢中w(S)≤10×106,部分炉次可达到极低硫钢(w(S)≤5×10-6)水平.以试验为基础,运用精炼脱硫模型,对主要的脱硫参数进行了分析,结果表明:理论硫分配比远高于实际硫分配比,钢中氧活度在(3~10)×10-6时,随着氧活度的升高,硫分配比迅速降低;LF精炼过程中温度每升高10℃,理论硫分配比增加4~5.  相似文献   

8.
基于首钢京唐公司X80管线钢的生产数据,从热力学上分析了转炉终点渣和LF精炼渣硫容量与钢中硫含量的对应关系,给出了精炼渣成分的调节方向。结果表明:精炼渣成分应控制在如下范围:w(CaO)为55%~60%;w(SiO2)为10%~12%;w(Al2O3)为20%~25%;w(MgO)为6%、w(FeO+MnO)小于1.5%。该成分的精炼渣最终硫分配比范围可控制在198~542。  相似文献   

9.
脱硫是LF精炼的主要任务之一,基于酒钢S50C中高碳钢的开发,对S50C钢LF精炼过程硫容量、硫分配比的计算方法进行了研究。主要利用IMCT模型和KTH模型对LF精炼渣的渣-钢硫分配比进行计算,并通过工业试验对计算结果进行验证。结果表明,IMCT模型和KTH模型的计算值均能表现从LF到站到LF出站的过程中脱硫反应向着平衡的方向发展,但是KTH模型的计算结果更为准确。因此,对IMCT模型进行了修正,修正后的模型也能较为准确地计算出LF精炼末期硫分配比。最后计算了CaF_2含量对硫容量的影响,结果显示CaF_2含量对平衡硫容量的影响较小。  相似文献   

10.
摘要:脱硫是LF精炼的主要任务之一,基于酒钢S50C中高碳钢的开发,对S50C钢LF精炼过程硫容量、硫分配比的计算方法进行了研究。主要利用IMCT模型和KTH模型对LF精炼渣的渣 钢硫分配比进行计算,并通过工业试验对计算结果进行验证。结果表明,IMCT模型和KTH模型的计算值均能表现从LF到站到LF出站的过程中脱硫反应向着平衡的方向发展,但是KTH模型的计算结果更为准确。因此,对IMCT模型进行了修正,修正后的模型也能较为准确地计算出LF精炼末期硫分配比。最后计算了CaF2含量对硫容量的影响,结果显示CaF2含量对平衡硫容量的影响较小。  相似文献   

11.
The thermodynamic characteristics of desulfurization reaction (CaO)+[S]=(CaS)+[O] is analyzed based on the detailed composition of liquid steel and slag of Steel Plate Hot Commercial (SPHC) in Jiuquan Iron & Steel Corporation(JISC), where the activities of CaO, CaS and Al2O3 in molten slag are calculated by thermodynamic software FactSage for a more accurate result. The critical values of [O%]/[S%] for desulfurization at different temperature is are obtained, typically 0.09 at 1873K, which shows directly that it should deoxidize adequately for obtaining a favorable desulfurization condition. In addition, the thermodynamic analysis indicates that the actual dissolved O is much higher than that of equilibrium calculation which shows Al-O reaction in LF is far away from equilibrium, but it is perfect agreement with the computing results when taking the activity of Al2O3 as 1 that due to the inclusion component in LF is mainly Al2O3. Besides, with the temperature rise, the sulfur partition ratio increases softly meanwhile the reaction between Al and O is limited to a great degree resulting in the increase a dissolved oxygen in liquid steel that decreases the sulfur partition ratio seriously. As a result, the sulfur partition ratio appears to decrease with temperature increase in Al killed steel.  相似文献   

12.
Steel and slag samples were taken at the start and the end of LF refining for steel plate cold common (SPCC), in the compact strip production (CSP) process, and at the same time, the temperature and oxygen activity a[o] were measured by using an oxygen sensor. Furthermore, inclusions in steel samples were monitored by scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS). It was confirmed that a [o] in liq- uid steel was in equilibrium with inclusion rather than with top slag during LF refining. Desulfurization was related to deoxidation since a[o] at slag-steel interface was clarified to be very close to that in liquid steel under the specific con- dition in LF with intense stirring by argon blowing and refined by highly basic low oxidizing slag for Al-killed steel. Sulfur partition ratio (Ls) was very sensitive to a[o]. Since a[o] increased rapidly with temperature rise, it not only offset promotion to desulfurization reaction with temperature rise but decreased Ls. For Al-killed steel, the.modifica- tion of Al2O3 for lowering the activity of Al2O3 in inclusion was believed to be favorable for both deoxidation and desulfurization during LF refining.  相似文献   

13.
A sulfide capacity prediction model of CaO-SiO2-MgO-FeO-MnO-Al2O3 ladle furnace (LF) refining slags has been developed based on the ion and molecule coexistence theory (IMCT). The predicted sulfide capacity of the LF refining slags has better accuracy than the measured sulfide capacity of the slags at the middle and final stages during the LF refining process. Increasing slag binary basicity, optical basicity, and the Mannesmann index can lead to an increase of the predicted sulfide capacity for the LF refining slags as well as to an increase of the sulfur distribution ratio between the slags and molten steel at the middle and final stages during the LF refining process. The calculated equilibrium mole numbers, mass action concentrations of structural units or ion couples, rather than mass percentages of components, are recommended to represent the slag composition for correlating with the sulfide capacity of the slags. The developed sulfide capacity IMCT model can calculate not only the total sulfide capacity of the slags but also the respective sulfide capacity of free CaO, MgO, FeO, and MnO in the slags. The comprehensive contribution of the combined ion couples (Ca2+ + O2−) and (Mn2+ + O2−) on the desulfurization reactions accounts for 96.23 pct; meanwhile, the average contribution of the ion couple (Fe2+ + O2−) and (Mg2+ + O2−) only has a negligible contribution as 3.13 pct and 0.25 pct during the LF refining process, respectively. The oxygen activity of bulk molten steel in LF is controlled by the [Al]–[O] equilibrium, and the oxygen activity of molten steel at the slag–metal interface is controlled by the (FeO)–[O] equilibrium. The ratio of the oxygen activity of molten steel at the slag–metal interface to the oxygen activity of bulk molten steel will decrease from 37 to 5 at the initial stage, and further decrease from 28 to 4 at the middle stage, but will maintain at a reliable constant as 5 to 14 at the final stage during the LF refining process. The proposed high-oxygen potential layer of molten steel beneath the slag–metal interface can be quantitatively verified.  相似文献   

14.
程子建  郭靖  程树森 《钢铁》2012,47(10):45-51
 利用热力学计算软件FactSage确定了精炼渣中MgO质量分数合理范围为4%~8%,以6%最佳。由工业取样结果结合FactSage分析了1873K时SiO2-CaO-Al2O3-6%MgO准三元系液相区及CaO饱和的固液两相区渣-钢平衡。结果表明:高碱度高w(CaO)/w(Al2O3)(C/A)精炼渣有利于钢液的低氧低硫和低硅控制,但并非造得越“白”越好,相反过高的CaO对脱氧和硅含量控制不利。通过钢渣平衡分析得到了酒钢SPCC精炼渣优化成分范围(质量分数)为:CaO为50%~55%,Al2O3为30%~36%,SiO2为1%~6%,MgO为4%~8%,6%为最佳,碱度为9.0~14.0,w(CaO)/w(Al2O3)为1.5~1.8,实验室渣-钢平衡试验和工业生产结果均验证了优化的渣系较原渣系精炼效果更加优越,能够同时降低钢中总氧、硫和硅含量,也能有效控制钢中夹杂物的成分。  相似文献   

15.
为了降低钢的T[O]含量和生成较低熔点的非金属夹杂物以改善合金结构钢的抗疲劳破坏性能,在炉外精炼中采用了高碱度和高Al2O3含量的渣系.研究发现LF和RH精炼结束时钢液T[O]含量均随炉渣碱度增加而降低,在炉渣Al2O3含量低于25%时,T[O]随炉渣Al2O3含量减少而降低,而当炉渣Al2O3超过25%后,T[O]则随炉渣Al2O3含量增加而降低.精炼过程钢液中夹杂物按"Al2O3系夹杂物→MgO-Al2O3系夹杂物→CaO-MgO-Al2O3系夹杂物"顺序发生转变,其中MgO-Al2O3系夹杂物向CaO-MgO-Al2O3系夹杂物的转变是由外向内逐步进行的,转变速度相对较慢,因而致使LF结束时钢中仍存在许多尚未转变的Mgo-Al2O3系夹杂物.钢液T[O]对夹杂物转变有显著影响,降低T[O]含量有利于生成较低熔点的CaO-MgO-Al2O3系夹杂物.  相似文献   

16.
通过研究40tLF精炼渣的碱度和脱氧工艺对42CrMoS4V钢中硫质量分数的控制、氧化物含量和钢中硫化物的影响。结果表明,LF精炼渣碱度控制在3.0~3.5喂硫线,VD后硫的回收率达70%~90%;钢中硫化物、氧化物级别≤2.0级;精炼结束喂适量Ca-Si线可改善钢中硫化物的形貌。  相似文献   

17.
姚同路  林平  佟溥翘 《特殊钢》2009,30(2):43-45
通过对100 t LF精炼37Mn5套管钢时1 540~1580℃钢水中稳定氧化物夹杂含量与T[O]的关系以及钢-渣平衡时渣碱度对钢中活性氧含量影响的分析,提出降低钢中T[O]和夹杂物含量的改进工艺措施。热力学计算和试验结果表明,当[Al]s为0.03%~0.04%,精炼渣碱度为3,(CaO)/(Al2O3)=3~3.5时,37Mn5钢中的氧含量降到10×10-6,管材基本消除了粗系夹杂,细系夹杂A+B+C+D≤5.0级,达到使用要求。  相似文献   

18.
A thermodynamic model for calculating the sulfur distribution ratio between ladle furnace (LF) refining slags and molten steel has been developed by coupling with a developed thermodynamic model for calculating the mass action concentrations of structural units in LF refining slags, i.e., CaO–SiO2–MgO–FeO–MnO–Al2O3 hexabasic slags, based on the ion and molecule coexistence theory (IMCT). The calculated mass action concentrations of structural units in CaO–SiO2–MgO–FeO–Al2O3–MnO slags equilibrated or reacted with molten steel show that the calculated equilibrium mole numbers or mass action concentrations of structural units or ion couples, rather than mass percentage of components, in the slags can represent their reaction abilities. The calculated total sulfur distribution ratio shows a reliable agreement with the measured or the calculated sulfur distribution ratio between the slags and molten steel by other models under the condition of choosing oxygen activity based on (FeO)–[O] equilibrium. Meanwhile, the developed thermodynamic model for calculating sulfur distribution ratio can quantitatively determine the respective contribution of free CaO, MgO, FeO, and MnO in the LF refining slags. A significant difference of desulfurization ability among free component as CaO, MgO, FeO, and MnO has been found with approximately 87–93 pct, 11.43–5.85 pct, 0.81–0.60 pct and 0.30–0.27 pct at both middle and final stages during LF refining process, respectively. A large difference of oxygen activity is found in molten steel at the slag–metal interface and in bulk molten steel. The oxygen activity in molten steel at the slag–metal interface is controlled by (FeO)–[O] equilibrium, whereas the oxygen activity in bulk molten steel is controlled by [Al]–[O] equilibrium. Decreasing the high-oxygen-activity boundary layer beneath the slag–metal interface can promote the desulfurization reaction rate effectively or shorten the refining period during the LF refining process.  相似文献   

19.
陈爱梅 《特殊钢》2012,33(5):43-44
采用铁水预处理-120 t顶底复吹转炉-LF-VD-φ180 mm连铸工艺生产GCr15轴承钢.统计分析了轴承钢转炉终点[C]对钢水氧活度的影响,LF精炼渣碱度对T[O]的影响,LF末钢中铝含量对VD过程铝损和T[O]的影响.通过控制转炉终点[C]≥0.06%、出钢用铝锰铁强化脱氧;控制LF离位时[Al]0.020% ~0.040%,( FeO+MnO)≤1%,碱度2.8~4.5;VD软吹时间≥15 min,轴承钢中全氧含量为(6~12) ×10-6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号